ENVIRONMENTAL IMPACT ASSESSMENT (EIA) REPORT
AMENDMENT IN MASTER PLAN FOR LAHORE DIVISION
(THE PROJECT)
DISTRICTS LAHORE, KASUR, NANKANA SAHB & SHEIKHUPURA

Haris Engineering and Management Consultant (HEMC) in association with Solution Environmental and Analytical Laboratory SEAL
AMENDMENT IN MASTER PLAN FOR LAHORE DIVISION
(THE PROJECT)

Districts Lahore, Kasur, Sheikhupura and Nankana Sahib

Environmental Impact Assessment (EIA) Report
Lahore Development Authority (LDA), Lahore
Executive Summary

The Lahore Development Authority (LDA) has envisaged to prepare a comprehensive Master Plan for the whole Lahore Division which is hereinafter referred to as “the Project Area”. The Project site is geographically located between 30°38’31.93‖E to 32°03’37.99‖ and 73°17’37.86‖ to 74°42'05.83". The site is surrounded by the India in east, Gujranwala in the north, Faisalabad in the west and Sahiwal & Pakpattan in the south. The project site is accessible through all major Roads like Grand Trunk Road, Ring Road Multan Road, Ferozpur Road, Lahore-Sheikhupura Road and Motorway-M2.

Lahore Development Authority (LDA), Government of the Punjab, has designated its Metropolitan Planning Wing and Strategic Policy Unit with the task of preparation of this Master Plan for future 20 years i.e. till year 2035. For this purpose, Environmental Impact Assessment (EIA) study has been prepared in accordance with the TOR’S given and as integral part for land use planning. It is added here that the term “Master Plan for Lahore Division” is hereinafter referred to the Amendment in Master Plan for Lahore Division (The Project).

The preparation and submission of an Environmental Impact Assessment (EIA) report for any development project is a statutory obligation under Punjab Environmental Protection Act, 1997 (PEPA, 1997) amended in 2012 in terms of Section 12 of the Act. The current Project falls under Schedule- II of subsection H of IEE/EIA Regulation as per section 12 of Environmental Protection Act and thus requires Environmental Impact Assessment - EIA.

The approach adopted for carrying out the EIA study includes review of the available data, analysis of collected data, establishing environmental baseline survey of the project related to physical, ecological & social environment, impact identification and suggesting mitigation measures and preparation of environmental and disaster management plan.

1. POLICY, LEGAL AND ADMINISTRATIVE FRAMEWORK

The project will comply with all the national legislation relating to the environment as specified in Punjab Environmental Protection Act (PEPA), 1997 Amended 2012. The
national legislations relating to the environment in Pakistan in order to obtain the required regulatory clearances are listed below:

- The National Conservation Strategy, 1992
- Punjab Environmental Protection Act (PEPA) 1997 Amended 2012
- The Pakistan Environmental Protection Agency Regulations, 2000,
- The National Environment Policy, 2005
- The National Forest Policy, 2001
- National Environmental Quality Standards (NEQS) 2000
- The Forest Act. of 1930
- The Provincial Wildlife Act 1975
- Land Acquisition Act., 1894
- Climate Change Policy and Framework 2010
- Punjab Local Government Ordinance, 2001
- Punjab Local Government Act, 2013
- Lahore Development Authority Act, 1975
- LDA Land Use Rules, 2014
- LDA (Master Plan) Rules, 2014
- LDA Building and Zoning Regulations, 2007
- National Disaster Risk Reduction Policy 2013
- Convention on the Conservation of Migratory Species of Wild Animals (Bonn Convention)
- Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES)

The project also complies with World Bank safe guard policy and other provincial and departmental applicable laws and regulations that includes Pakistan Explosives Act 1884 and Pakistan Penal Code, 1860.

2. PROJECT DESCRIPTION

The Project is located in Lahore Division which is an administrative division of Punjab Province, Pakistan and called the third tier of government. Lahore statistical division contains the districts of Lahore, Nankana Sahib, Kasur, and Shekhupura. The area of Lahore Division is about 11413.5 km² with the population of 14 million in accordance with 1998 census. With average growth rate of 3.20, the current population of Lahore division is estimated as 25 million. A projection is that by year 2035 there will be almost 50 million people living in the division. The unplanned expansion of the Lahore division, competing land use and exponential population
growth with the rate up to 3.20 had put the burden on existing infrastructure causing multiple problems like land use conflicts, traffic congestion, pollution, environmental degradation, water degradation and social implications. Therefore, master planning is required for the Lahore division in order for structured development with pragmatic approach that can mainstream current industrial and residential development. The total area of Project that is estimated for master planning is about 348,565.38 Acres. The master plan is designed up till 2035 with estimated total population growth of Project areas up to 6.9 million. The design population for the master plan of Lahore division of project areas 2035 is about 6.9 million. There are total 48 proposed areas selected for the master planning in Lahore Division out of 04 areas falls in Lahore District, 10 areas falls in Nankana District, 16 areas fall in Kasur District and 18 areas fall in Sheikhpura District. The description of each of these existing and proposed project areas with mapping are given in section 3.5

3. Analysis of Alternatives

The analysis has been carried out critically so as to justify the need of the Project. Besides the economic viability, environmental and social soundness of the proposed Project should also be considered when analyzing various alternatives. The various alternatives considered during the conduct of the study are as under:

- No Project Option (NPO)
- Location alternatives
- Layout alternatives
- Design alternatives

Over the years various efforts were made for the preparation and implementation of the master plans for the Lahore. However, the last plan Integrated Master Plan of Lahore (IMPL) in 2004 up to 2021. Due to one reason or other this plan cannot implemented in its true spirit.

Similarly from time to time various Outline Development Plans (ODPs), Agroville Development Plans for areas around Lahore has been prepared. These includes Bhai Phero Development Plan (1992-2017), Kahana Nau Development Plan (2000-2025), Kot Radha Kishan Development Plan (1994), Nankana Sahib Infrastructure in Selected Settlement Agroville Plan, Pattoki Infrastructure in Selected Settlement
Amendment in Master Plan for Lahore Division (The Project)
Environmental Impact Assessment (EIA) Report

Executive Summary

Agroville Plan, Raiwind Development Plan, Outline Sheikhupura Development Plan etc. were prepared but cannot be implemented for reasons mentioned above.

Over the last few years the city has undergone some significant changes. Implementation of major infrastructure projects such as Lahore Ring road, Metro Bus Transit, Under Passes, Fly overs etc. has changed the characteristics of the Lahore from old one. The IMPL is unable to cope with the present situation even if all the resources are gathered to implement it. On account of this reality as the first phase the IMPL was amended in 2014 and notified in 2015.

With the approval of LDA Master Plan Rules, 2014, along with the jurisdiction of LDA extended over Lahore Division, this calls for immediate need to improve the quality of life and ensure sustainable development for the subject area. Similarly, various ODPs and Agroville plans of these areas need to be integrated in one Plan for the whole division. This solution can be achieved through proper study and updating for Master Plan of Lahore Division which will ensure proper and regular coordination of all public agencies. In this regards, no project option will mean that the concerned authority i.e. LDA takes no action and let the problems worsen.

4. ENVIRONMENTAL BASELINE CONDITIONS

Topography: The topography of the project area is generally plane sloping from north-west to south-west. The general height of the Lahore division is about 190 meters above the sea level. River Ravi is flowing in the mid while River Satlej is flowing on southern side towards Kasur just before the divisional boundary

Geology and Seismology: The project site is located in Punjab which is a vast plain of alluvial material, deposited by Indus basin and its tributaries crossing the Punjab Plain. The alluvial deposits underlying the site are deposited by the rivers.

The thickness of alluvial deposits in Lahore division is thought to be more than 300 m which are underlain by the basement rocks of the Indian shield. The alluvial deposits mainly consist of sands, with intercalation of silt and clay layers of varying thickness.

Soil: Subsurface Lithology is composed of Lean Clay/Silt/Silty/Sand/Poorly Graded Sand with Silt up to maximum investigated depth of 30 m below NSL. The topmost
soil layer mostly comprises of Lean Clay in very soft to soft state. The thickness of this layer is approximately 3.0 m below NSL. This cover is absent at places.

Climate: The coldest month is January in which the mean maximum temperature is 19.4 °C and the mean minimum temperature is 6.6 °C. June is the hottest month with the mean maximum temperature near 39.8 °C and the mean minimum temperature as 27.4 °C. The average annual rainfall during the last 20 years period from (1991-2010) works out to be 55.25 mm.

Water Resources: Surface water in the Study Area of the Project is present in the form of a rivers and canals. Surface water in the Study Area of the Project is present in the form of a river and canals. The rivers are Ravi and Sutlej while canals are Banbarwali Ravi Bedian Canal (BRB), Upper Chenab Canal, Qadirabad Balloki Link Canal, Lahore Branch Canal Butcherkhana Distributory. The detail of surface water and its analysis are given in detail in section 5.2.7

Hydrology: Lahore division is a part of Punjab Province of Pakistan. Geologically, this area is a part of lower Indus Basin. Two main rivers pass from Lahore Division, Ravi River and Sutlej River. The slope of the land in planned area is to the south-west, which directs the rivers to flow in this path. Average slope of the area is 0.32m/km. The following link canals pass through our study area, Bambanwala Ravi Bedian Link Canal, Qadirabad-Bulloki Link Canal, Balloki – Sulemanki Link, Lower Bāri Doāb Canal, Upper Chenab Canal and Lower Chenab Canal

In addition, the following hydraulic structures lie inside our study area, Balloki Barrage, BRB-Ravi Siphon. Furthermore, the planned areas have abundance of water in the form of groundwater aquifer. The aquifer of Lahore District is broadly viewed as a single contiguous, unconfined aquifer. The short term hydrology report is attached as Annex-

Air Quality: At present, major sources of air pollution are industrial and mobile sources. Other sources of ambient air pollution are the generators in industrial and commercial units for alternative power supply sources. The overall quality of ambient air at most of the location is good except particulate matter which is higher at road sides. All samples taken at road side have found high values of PM.
Executive Summary

Noise Level: Number of sources of noise emission has been detected in the study area. These sources are vehicular traffic, operation of industrial activities, operation of generators in commercial activities, operation of pumping & disposal stations.

Noise levels were monitored at 08 locations in whole project boundary. The results show that the noise levels on all major roads are much higher than NEQS but the noise levels are in compliance in villages and settlements.

4.1. **Natural and Biological Environment:**

Flora and Fauna: The project sites had significantly higher biodiversity richness which was 101 species of fauna and 148 species of flora. Fauna includes 70 species of birds, 13 of mammals, 15 of reptiles and 3 of amphibians whereas there were 148 species of flora in the area. None of the native plant species are under threat as per IUCN Red list but they are under serious threat locally as they have been exterminated and replaced with other species. Same is the case with native fish species that suffer from decline due to over exploitation, water pollution and introduction of invasive species.

Crops and Vegetables: A large number of vegetables are grown in the study area that includes Phool Gobhi/cauliflower (Brassica oleracea Ver. Botrytis), Band Gobhi (Brassica oleracea Ver. capitata) Turnip, Raddish (Raphanus sativus), Carrot (Daucus carota), Bhindi, Tomato (Lycopersicum esculentum), Vegetable Marrow (Cucurbita pepo), Baingan etc. Crops usually seeded in the area include Rice, Barley (Hordeum vulgare), Jawar (Andropogan sorghum), Maize and Sugarcane along with other fodder. Wheat crop was also identified.

4.2. **Socio-Cultural Environment**

Socio-economic features of project area that mainly focus on demography, occupation, education, housing, health, family income, basic amenities, land use, livestock, resettlement concerns, archaeology, shrines and mosques are presented in section 5.6. The field surveys conducted in the Project Area and data collected from the relevant agencies indicate that there is 1.2 million population in the project area with total built up area 62689.74 acres. 135 villages/towns have been identified in project area, out of which 16 villages/towns fall in Lahore District, 17 villages/towns fall in Tehsil Muridkey, Ferozewala and Sheikhupura of Sheikhupura.
District, 9 villages/towns fall in District Nanakana Sahib and remaining 91 villages/towns fall in District Kasur

5. Impacts and Mitigation

5.1. Positive Impacts

The major positive impacts of the project include:

- Sustainable use of available natural resources
- Improvement in infrastructure and utility services
- Improvement in health care, education, water supply and sewerage facilities
- Lesser the migration from small cities towards big city due to improved facilities
- Increase the employment rate with livelihood as it involves development of residential and industries areas, public administration, institutions and infrastructure facilities.
- Enhanced space for industrial sector and cluster of industry brings industrial symbiosis
- Increase in quality of life due to infrastructure and basic facilities.
- Scenic beauty of area due to increase in green spaces and public parks
- Positive impact on woman

5.2. Environmental Impacts during Planning Stage and Mitigation Measures

5.2.1. Environmental Impacts during Planning Stage

Ground Water

The sole supply of water to the Lahore Division depends upon the abstraction of groundwater. The rapid growth rate of population, progressive migration of people from the nearby areas towards the city and the establishment of numerous industries has resulted in rapid increase in water demand. Further increase in population uptill 2035 will result in decline in ground water aquifer with threat to deplete the ground water resource. In accordance with recent study the depletion rate of ground water for Lahore district is about 2.5-3.0 feet per year. Further proposed urbanization and industrialization has the tendency to reduce the ground water recharge, as a significant part of the land has become impermeable. The existence of saline groundwater in the nearby areas of Raiwind and Kasur, in the south of Lahore, is a potential threat to the aquifer under the Lahore city.
Surface Water Resources and Quality
Currently the entire wastewater from Lahore District is collected through a network of 14 main drains and discharged into the River Ravi without any treatment. The wastewater from Nankana, Shiekhpura and part of Kasur districts are also finally discharged in to the River Ravi. The waste water from southern part of Kasur district is discharge in to River Sutlej. This wastewater is being discharged into the rivers without any treatment and contains category of industrial, commercial and residential wastewater. Due to non-availability of fresh water in River Ravi, the river is converted in to sewage. With the potential to increase in population with development of residential areas, housing schemes and industrial areas in districts of Lahore division the pollution level and quantities of wastewater is likely to increase many folds which may have direct negative impact on our surface water resource and indirectly; on agriculture, ground water and human health.

Flood
The project sites include two rivers i.e. Ravi and Sutlej and number of canals and drains so there is chance of flood hazard to occur at the project sites. According to the PDMA-DRP, the River Ravi belongs to the category B flooding (medium Level Flood). In Sutlej river, most of the flow is yielded by heavy monsoon rains. Following settlements of project area have a potential risk of flooding in river Ravi for 100 years return period in accordance with short term hydrological study attached as Appendix III. The settlements include Bhai Pheru, Bucheki, Mandi Faizabad, Mor Khunda, and Syed Wala can subjected to flooding. The settlement Ferozwala is under potential threat of flooding due to Deg Nallah. The settlement Muredke is under potential threat of flooding due to Nikki Deg Drian The map of flood prone areas are attached as Annex III

Climate Change
Pakistan is rated among the top 10 most vulnerable countries to climate change. The major concerns of climate change in reference to our project site areas are given as under:-

- Increased variability of Monsoon;
- Projected recession of Glaciers threatening IRS Flows;
Amendment in Master Plan for Lahore Division (The Project)

Environmental Impact Assessment (EIA) Report

Executive Summary

- Increased risks of Extreme Events (floods, droughts, cyclones, extreme high / low temperatures etc.);
- Severe water- and heat-stressed conditions in arid and semi-arid regions leading to reduced agricultural productivity;
- Increase in Deforestation; Loss of Biodiversity;
- Health Risks

The major extreme climatic events in reference to our project areas are given as under:-

- Isolated hailstorm in and around urban area of Lahore in 2011
- Urban Flooding in Lahore due to extreme rainfall of about 46.7 inches in 2013
- Localized Cloud Burst rains causing urban flooding in Lahore (1996)
- Large scale flooding in 1988 and 1992 in Lahore
- History's worst drought during 1999 – 2002 in Lahore
- Intense heat waves during 2003, 2005, 2007 and 2010 (53.7 °C) in Lahore

The climate change poses the serious threat in project areas if not mitigated or without an adaptive capability for the extreme climatic events.

Land Resources

The LDA will require land acquisition for widening and improvement of the existing roads, development of bypass roads for various existing town/villages etc, development of inter town and villages roads, development of new main roads, connecting roads, accessibility roads, sewerage systems including pumping stations, disposal stations, treatment plants, development of recreational areas, public utilities, buildings, administration buildings, toll stations and weighing stations

High Voltage Transmission Lines

The high voltage transmissions line are passing and planned to be passed from some of the project areas. These transmissions line if not been buffered have variety of health impacts on human. The short term health impacts include Headaches, Fatigue, Anxiety, Insomnia, Prickling and/or burning skin, Rashes and Muscle pain.

The long term health impacts include risk of damaging DNA, risk of cancer, risk of leukemia, risk of neurodegenerative disease and risk of miscarria.
Transportation

The big Cities mainly depend on transport system for their economic survival and socio-environmental sustainability and the transport system has a direct impact on all sectors of an economy. At present many infrastructure facilities such as underpasses, wide roads, bridges, signal free corridor etc. have been made in Lahore but increasing population with traffic volume rapidly overburden these facilities and vigorously worsen in future also. The situation will be in worst position if long-term planning of transportation in master plan has not been done. The major impact would be seen on our economy if high efficiency transport system will not be designed for Lahore division.

Solid Waste

Solid waste generation rate on average in Lahore City is approximately 0.85 kg per capita per day. Considering 6.9 Million population of projected areas of Lahore Division, the total municipal solid waste will be generated 10,000 tons/day. Municipal solid waste produced from Lahore division if not managed properly, will cause aesthetic problems and also produce odor along with the spread of many diseases. Similarly, medical waste produced from medical facilities etc. if not properly managed and disposed, it can result in injury by contaminated sharp material and infection with Hepatitis B, C, and HIV etc.

5.2.2. Mitigation Measures during Planning Stage

Ground Water

- LDA through WASA should take measures to control demand by reducing per capita water availability by educating households to use water more wisely.
- For long-term sustainability of drinking water supplies, the possibility of supplementing groundwater supplies with surface water supplies should be explored, wherever possible. For Lahore division, provision of surface water supply from the River Ravi or BRBD, UCC, QB Link etc. canal system may be considered after addressing quality concerns.
- New housing societies should also be made aware of the problem and their groundwater extraction quota should be fixed based on specified per capita demand
- Use high efficiency irrigation for agriculture use such as use drip irrigation instead of flood irrigation
- To increase recharge to groundwater, rainwater harvesting should be encouraged in all new and old housing schemes and in areas proposed for
the residential and industrial use. For this purpose, special recharge zones may be developed to facilitate groundwater recharge

- In order to promote the culture of water conservation, a metering system should be introduced to charge water on a volumetric basis

Surface Water Resource and Quality

- Water quality challenges need to be addressed in an integrated manner and by adopting pollution prevention strategies by LDA along with other concerned agencies like EPA.
- Industries have to install wastewater treatment plant at source and should discharge the water that meets the NEQS. If possible the water should be recycled in to other processes or can be used for flushing and washing.
- Strict compliance is needed from enforcement agency like EPA on wastewater effluent NEQS from industries
- Wastewater treatment plant should have installed on all the outfalls that falls in to the river Ravi. For that recommendation of WWTP study for Ravi Riverfront Urban Development Project should be followed.
- Recommendations of River Ravi Commission should be followed, which include development of constructed wetlands on drains before discharge into the river Ravi and provision of septic tanks in new housings.

Flood

- Channelization and modification of river area from only where there is chance of flood hazard to occur.
- Develop large retention ponds in between river and flood prone identified areas. Water can be trapped in a retention pond and then released at a controlled discharge to prevent flooding.
- Dikes/Bund should be developed precise to the identified flood prone areas along the side of the rivers in order to prevent the flood.

Climate Change

Pakistan developed the Climate Change Policy and Framework in 2010 by Ministry of Climate Change. This policy and framework till yet not have been implemented and we have still face challenges of climate change. In order to effective mitigation and adaptation towards climate change, the Government has to implement the climate change policy and its framework at sectorial, institutional and departmental level on urgent basis.
Land Resources

The land acquisition should be done in accordance with the land acquisition act 1897 and its amendments. Compensation against land, structure, disturbance allowance should be provided to the affectees as per market price.

High Voltage Transmission Lines

The National Transmission and Dispatch Company (NTDC) should share the plan with Lahore Development Authority (LDA) for new transmission lines that are proposed to pass from the project area. The LDA will mark the area in master plan and adequate buffer zone at least 50 meters will be provided.

The LDA should also mark the area of already existing transmission lines that are passing from the project area and adequate buffer zone along the transmission line should be provided.

Transportation

- The public transport should have been improved through inter and intra city mass transit that can be faster, cheaper, and more relaxing. It also helps minimize environmental damage caused by excessive car use.
- Private cars on road should be discouraged by increasing parking fee and vehicle tax on owners.
- Improve bicycle and pedestrian facilities and programs.

Solid Waste

- Currently in the City of Lahore LWMC is main responsible organization for management of solid waste. Its jurisdiction needs to be increased in adjoining area up to Lahore division Level and its coordination with local departments needs enhanced.
- Already landfill site present in Lahore at Mehmood Boti and one engineered landfill site is present at lakhodair. The LWMC has already suggested landfill sites and transfer stations in Lahore and Kasur region. The Landfill Sites for other districts such as Nankana and Shiekhpura should also be studied and develop and included in the master plan.
- The municipal waste should be managed in accordance with waste management hierarchy.
- Care must be taken as not to mix medical waste with municipal waste.
- Medical waste need to be segregated and collected in house in accordance with the Hospital Waste Management Rules, 2005. The collected waste should be given to LWMC for safe disposal in Landfill site after autoclaving.
Currently main disposal of hospital waste is through incineration which should be stopped as incineration is now least preferred technology for hospital waste management having problem of toxic air emissions.

5.3. Environmental Impacts during Development Stage and Mitigations

5.3.1. Environmental Impacts during Development Stage

Physical Environment

Major impacts on the physical environment include:

The contractors/LDA will require temporary acquisition of land for establishment of Contractor’s camp and other facilities and disposal sites for safe disposal of surplus construction and excavated spoil material. It is obvious that rental/leasing of land for establishing of Contractor’s facilities will change the local land use pattern. However, the change in land use will be temporary. Potential conflicts may emerge with the landowners regarding the restoration of temporarily acquired areas for establishing Contractor’s facilities, particularly those for borrow and spoil disposal areas. Borrow pits and other landscape depressions, if left open, may prove hazardous to human beings, livestock and wildlife. Moreover rain water ponding in open pits can be a potential health hazard both for human beings and livestock due to the mosquito breeding and the pollution caused by stagnation of the water. Soil erosion may aggravate in the workshop areas as a result of improper runoff drawn from the equipment washing-yards and improper management of construction activities in hilly areas particularly in the vicinity of natural streams. Soil erosion may also occur during the excavation of for roads, sewerage and water supply lines in addition to quarry areas. The reduction in vegetative cover will reduce the binding capacity of the soil and increase its susceptibility to erosion by the force of rainfall. Land may be contaminated by the spillage of chemicals like fuels, solvents, oils, paints and other construction chemicals and concrete.

Surface water resources may be contaminated by the spillage of fuel and chemicals or by dumping of waste material and effluents generated by the kitchens and toilets at the construction campsites. River, canals and nullahs may be contaminated with chemicals, oil, lubricants, detergents, etc. through runoff from the construction area, construction camp and equipment washing-yards.
Solid and liquid waste will be generated from construction camps and from construction activities if not managed, it will pose threat to environment. If the waste is allowed to be disposed in rivers/nullahs as well as on open areas, it will not only cause litter and aesthetic issues but will also cause contamination.

Due to the construction activities like excavation, clearing, leveling and compaction with the use of machinery like batching plants, excavators, dump truck, Road Rollers, Graders, Haul Trucks, cranes and other transport vehicles etc. Most of these are using diesel engines that generate noise and exhaust emissions. Generally, the above activity is generating particulate- matter (PM$_{10}$), smoke, dust, CO and NOx in the ambient air, which is deteriorating the air quality and resulting in impacts on human health, fauna and flora.

During the implementation of the project a large amount of equipment and construction plant will be utilized for construction of the works. The equipment would include bulldozers, scrapers, excavators, compactors, trucks, large capacity dumpers, graders, heavy duty cranes, concrete batching plants and stone crushers. The operation and movement of such equipment will increase the noise and vibration in the Project Area. The impact will be significant when compared to the without project situation.

Ecological Environment

The main negative impacts expected from the implementation and construction of this Master plan are; loss of agricultural land, loss of biodiversity, habitat loss and fragmentation, water, noise, air and light pollutions and change in groundwater recharge capacity. The detail Summary on Ecological Environment is given in Ecological Study attached as Appendix I

Socio-Cultural Environment

Residential/ agricultural and commercial land may need to be acquired to accommodate the proposed facilities. Similarly, some households may lose their commercial and residential structures, and Government/public sector infrastructure may be disrupted. Various religious and cultural properties like mosques and graveyards by individuals may get disrupted and few parts of the selected sites. During the construction stage, noise and dust problems will affect the health of
locals. Similarly, general mobility of the locals will be disturbed during this stage of the project. During the construction stage, squatters living along the nullah side and roads may be affected. In this way, the business of the squatters will suffer. Agricultural land, which is the main source of income of the people belonging to the proposed areas, will be affected during the construction stage. Fire hazards may increase in shopping complexes and parking areas. The arrival of affectees of different projects under development plan to the proposed areas may create a positive impact on the local business. However, this may become a threat to the available natural resources including water, fire wood, etc.

Noise generated by the construction machinery during the construction of roads and bridges is likely to affect the Project Area particularly the sensitive receptors like schools, hospitals, nearby community. Particular impact is envisaged on the community residing along the roads, which are either being widened or newly proposed.

There are number of large scale orchards in the area and fruit trees are grown by the people in large numbers along their agricultural fields. Therefore, the impact on horticulture during construction phase will be significant.

Induction of a foreign Contractor may cause cultural issues with the local community due to the unawareness of the local social norms and values. Similarly, the induction of outside labor during construction activities may create social problems like social movements, protests in the form of processions, etc.

As the Project activities are being carried out within the residential/agricultural/commercial areas of the local community, as a result of it, women activities in the field may be affected during the construction stage particularly in case of semi urban and rural areas.

The induction of outside Contractor labour may create social and gender issues due to the unawareness of local customs and norms. It may also cause hindrance to the mobility of the local women. However, due to this increase in land will shift the trend of the local from agriculture farming to selling of land for residential and commercial purpose.
5.3.2. *Mitigation Measures during Development Stage*

Physical Environment

Land required for establishing contractor’s facilities including borrowing earth material (if required) and dumping excess spoil will be leased directly from private landowners by the Contractor. Rental terms will have to be negotiated to the satisfaction of the landowners concerned. Supervisory Consultants will monitor the process of restoration and ensure, through the terms of the construction contracts, that landowners are compensated according to the terms of the lease agreements, and the restoration actions agreed upon by the Contractors are duly carried out. The photo-documentation of the existing land prior to temporary acquisition should also be available, which will be beneficial to resolve the restoration conflicts between the landowners and contractor. Construction camps and workshop will be located at a minimum distance of 250 m from the existing plantations and settlements, etc. This limit will be 500 m in case of batching plant. As far as possible, waste land or barren land i.e. areas not under agricultural, residential or forestation will be used for borrow material (if required) and setting up Project facilities. Good engineering practices will help in controlling the soil erosion both at construction sites and in peripheral areas, particularly in borrow and dumping areas and along the haul tracks. The Contractor will be required to train its workforce in the storage and handling of materials like furnace oil, diesel, petrol and chemicals, etc., that can potentially cause soil contamination. The Contractor will be required to prepare training manual and module for all the construction related activities along with the schedule of training program and submit to the supervisory consultants for approval. Soil contamination by asphalt and other obnoxious materials will be minimized by placing all the containers in caissons or dumped into pits lined with impervious liners to avoid contamination of soils/groundwater from leachates. Proper drainage facility will be provided at the camp areas to avoid the water accumulation, which will minimize the soil contamination. Proper solid waste management plan should be developed by the Contractor and implemented to avoid the litter and any other waste problems. Adequate number of solid waste containers should be placed within the camp area and surroundings to ease in storage and collection/disposal of solid waste.

Availability of water for campsite facilities and construction purposes will be ensured by the Contractor prior to the start of construction activities. The Contractor will seek
approval from the PMU and LDA/Local departments for use of the water resources for construction purposes. The Contractor will prepare guidelines for the workers for minimizing the wastage of water during the construction activities and at campsites. Construction camps will be established in the area with adequate natural drainage channels in order to facilitate flow of the treated effluents. The wastewater effluent from the Contractor’s workshops and equipment washing-yards will be passed through gravel/sand beds to remove oil/grease contaminants before discharging it into surface water sources. Similarly, the wastewater effluent from the campsite will be treated before its disposal into the surface water sources. A proper solid waste management plan (including storage, collection, transportation and disposal) should be developed to avoid contamination of the surface water resources. Batching plants should be placed at least 1 KM from any surface water body present in the project site. Water reuse and recycling strategy should be adopted on all batching plants. During the construction activities it should be ensured that the paint or other lubricants should not spilled into water channels.

A solid waste management plan should be made the responsibility of the construction contractor to provide for the designation of appropriate waste storage area on the site and a schedule for the timely collection and removal of construction debris to an approved dump site. The organic waste produced during site clearing should be mechanically mulched and composted at the site and used for landscaping. Providing adequate number of camps/restrooms for the workmen and waste baskets and dumpsters is essential to keep the construction site clean and pest free. Contractor should instruct his work force not to throw solid waste here and there, and common storage points should be made by the Contractor from where at the end of the day contractor should transport the whole day’s solid waste to designated disposal site.

Asphalt plants should be located at least 500 m downwind from the populated areas, wildlife habitats, and Contractors’ camps, to minimize the impact of emissions. Asphalt and concrete batching plants should be equipped with dust control equipment such as fabric filters or wet scrubbers to reduce the level of particulate emissions. Vehicles and other construction machinery should be properly tuned and maintained, to avoid hazardous level of emissions. Where dust emissions are high,
these will be reduced by a regular sprinkling of water for keeping the dust settled, at least twice a day. In order to prevent environmental pollution, haul-trucks carrying, earth, sand, aggregate and other materials will be kept covered with tarpaulin to help contain the construction materials being transported within the body of each carrier between the sites.

LDA in consultation with other concerned departments such as EPA, Punjab will set up a system to monitor the noise levels in the Project Area near the construction activities. For the construction machinery generating noise level in excess of that prescribed in NEQS and WHO limits, Contractor will make arrangements to bring the noise level within applicable limits (including proper tuning of vehicles and mufflers/silencers). Movements of the trucks and other construction machinery causing high noise levels must be restricted at night time to avoid disturbance to the nearby locality. Truck drivers should be instructed not to play loud music at night and stop use of horn. Proper noise barrier boundary walls will be built on asphalt/concrete plants which come close to any locality. To protect sensitive receptors including schools and hospitals from noise, thick tree plantation will be carried out towards the roadside, where there is enough space available between the boundaries of schools and roads.

Ecological Environment

Negative impacts on ecological environmental due to development of master plan can be mitigated by; minimizing biodiversity loss by developing Green Infrastructure, restoration of native vegetation on railroad and roadside verges and river and canal banks, Identification and conservation of areas important for priority animal species, planning for nature conservation through the restoration of ecological networks, urban agriculture and kitchen gardening. The detail summary of mitigation of negative impacts on ecological environment is given in Appendix I

Socio-Cultural Environment

Effective construction controls should be used by the Contractor to avoid inconvenience to the locals due to noise, smoke and fugitive dust. Proper arrangements in the form of alternative routes should be made to ensure that the mobility of locals should not be disturbed. After consultation with the traffic police, a proper traffic management plan should be prepared by the Contractor for mainroads
Executive Summary

specifically in order to avoid accidents. The Contractor will take due care related to the disposal of construction materials as well as solid waste disposal from the site, so that the nearby communities will not suffer. The Contractor will take care of the local communities water sources so that these should not be contaminated or destroyed. Safety lookouts should be built to prevent people and vehicles from passing at the time of heavy equipment operation area. Haul-trucks carrying concrete, aggregate and sand fill materials will be kept covered with tarpaulin to help contain construction materials being transported between the sites. In construction camps, amenities of life including clean food, water and sanitation facilities should be provided to these camps. The Contractor should arrange first aid boxes at camps. During the construction, accessibility of vehicles to the workshops should be ensured so that the business of shopkeepers will not be disturbed. Construction activities should be carried out during the night time, as most of the markets are closed at sunset. Affectees along with their children losing their agricultural land should be given employment opportunities on preferential basis during the construction stage. Similarly, in order to restore the livelihood of the people belonging to business and agriculture residing in nearby areas a proposed site for Truck Stand should be given labour opportunities during the construction stage. The main historical sites like shrines should be avoided from damage by the widening of roads. Similarly, by adopting protection measures, during construction, any negative impacts on cultural and historical sites may be minimized. In this regard, it is recommended that the Contractor should prepare a site specific management plan to avoid any damage to the sites. The Contractor will warn the workers not to indulge in any theft activities and if anyone would get involved in such type of activities, he will have to pay penalty and would be handed over to the police. Similarly, at the time of employing, the Contractor has to take care that the workers should be of good repute. The Contractor’s camp will be properly fenced and the main gate will be locked at night with a security guard to check prevent the theft issues from the community side. To avoid the cultural issues, the Contractor will facilitate the local labor during the construction activities. The Contractor will have to select the specific timings for the construction activities so as to cause least disturbance to the local population, particularly women, considering their peak movement hours. The Contractor will take due care of the local community and the sensitivity towards the local customs and
traditions will be encouraged. The Contractor will warn the staff strictly not to indulge in any un-ethical activities and to obey the local norms and cultural restrictions particularly with reference to women.

5.4. Environmental Impacts Resulting From Project Operation and Mitigations

5.4.1. Environmental Impacts from Project Operation

Physical Environment
Due to the development of residential schemes and societies with same level of standards and facilities like Lahore city the urbanization load on the city will be relieved. This will lead to the new opportunities for the commercial areas. The commercial markets will also develop which will share pressure on the existing overloaded commercial market and areas in the city. Due to the operation of the proposed roads and bridges along with extensions of the old ones will reduce the vehicular load in the city and generally traffic conditions will get improve during the operation stage. Due to the improved traffic conditions there will be a remarkable reduction in traffic hazards. If cross-drainage structures are not adequately maintained and cleaned, natural nullahs tend to become choked with debris and eroded soil, adversely affecting the quality of the surface water in the Project Area. The implementation of the proposed Master Plan land values will increase considerable on proportional basis. The lands which are located near to the proposed residential areas especially commercial sides will increase considerably. This will be positive impact on the land owners. However, due to this increase in land will shift the trend of the local from agriculture farming to selling of land for residential and commercial purpose. The noise pollution will be lesser than the construction phase. However, it will definitely be more than the pre-construction stage on account of the increase in traffic on the newly constructed and widened roads. However, it is expected that the resultant sound level will remain well within the NEQS limits. Due to the operation of the parks and playgrounds, recreational activities among the locals will increase. Operation of the bus terminals will help in the reduction of the vehicular load in the city and overcome the haphazard condition in the old bus terminals. Due to the construction of intercity bus terminals at the new locations, traffic load in the city will be reduced to a large extent. During operation stage about
5000 cusec of wastewater will be generated from projected areas of Lahore Division. This waste water poses the threat to fresh water resource especially to River Ravi if not been treated. Additionally it may deteriorate quality of downstream and may also be threat to the local flora and fauna.

Ecological Environment

During operational phase the ecological impacts include urban development on biodiversity, Change in land use pattern, Habitat degradation due to higher pollutants, Habitat Fragmentation, Bird Collisions and strikes and Change in groundwater recharge capacity.

Socio-Cultural Environment

Increased number of planned residential areas will be a positive impact regarding the local business of the shopkeepers, tourist guides, hotels and food stalls. However, this increased number of visitors may become a threat to the available natural resources. This may also create uneasiness for the locals. Noise generated by the vehicles will further increase, which will disturb the local communities, school staff and students, etc. existing near the roads. Health problems on account of air pollution may increase in the operation stage of the Project. There will be risk of fire hazard on shopping plazas, bus terminals etc. Health issues may generate due to the improper cleanliness of toilets at bus terminals, shopping complexes, public parks and play grounds.

5.4.2. Mitigation Measures during Operational Stage

Physical Environment

- For the air and noise quality, a monitoring system will be established by LDA/PMU and EPA to ensure that ambient air and noise levels are within the permissible limits. To reduce the noise levels, if deemed necessary, provision of thick tree plantation, noise barriers and double glazed windows will be assessed as per site conditions for the sensitive receptors including schools and hospitals. For the liquid waste problem, wastewater treatment plant(s) should be constructed and before the disposal of wastewater into the surface water body. In order to retrieve the aesthetic view of the area, sufficient additional plantation of about 95 trees per hectar of different indigeneous species will be carried out (detail in Ecological Report attached...
Executive Summary

as Appendix I). In order to avoid the soil contamination, a fully paved area should be designated for the vehicles maintenance in each bus terminal/truck stand. Solid waste from the incinerator, slaughter house, Mutton and fish market should be collected properly and disposed of after proper recycling. It will be ensured by the road/Highway Department that storm water drains and road drainage system are periodically cleared to maintain the water flow.

Ecological Environment
To mitigate the operational impacts and for restoration of natural features; strategies and implementation plan should be adopted followed as

- Use of native species
- EIA of all new developments
- Groundwater recharge
- Rain water harvesting
- Pollution control by following NEQS
- Solid waste management
- Wastewater treatment plants
- Urban agriculture and kitchen gardening
- Farm mechanization for increased agricultural productivity
- Tunnel Farming
- Green roofs and walls
- Policy Framework for green infrastructure
- Biotope/habitat opportunity mapping and making ecological action plans for individual cities.

Socio-Cultural Environment
In order to solve the accident problems, speed limit, sign boards and speed breakers should be provided on roads. The visitors should be briefed about not damaging/degrading the natural resources. Traffic police should ensure that the vehicles are properly tuned up to minimize the air and noise pollution. Firefighting arrangements should be provided in the operation stage for the shopping complexes and parking plazas, and bus terminals, etc. Proper arrangement for the cleanliness of the toilets and waiting rooms should be provided for the passengers at bus terminals.
6. Environmental Management and Monitoring Plan (EMMP)

- In order to counter the significant negative impacts, a detailed EMMP has been developed that includes the proposed mitigation measures against the potential adverse impacts along with defining the roles and responsibilities of each organization for management and monitoring of impacts. The EMMP also outlines the monitoring requirements for compliance and effects monitoring of the Project, communication and documentation, site restoration and necessary training of the staff required. If this EMMP is strictly enforced during each stage of the Project, the level of negative impacts will be minimized or made negligible and positive impacts will be enhanced.

- It is recommended that mitigation measures proposed in impacts and mitigation chapter and EMMP should be adequately implemented at design, construction and operation stages.

7. Stake Holders Consultation

Stakeholder’s consultation was done in order to have their view point about the project. Twentyfive (25) comprehensive consultations including scoping sessions and focus group discussions were held. In addition, a few consultations were also held in the form of detailed interviews of individuals including men and women at project area. The different stakeholders which are identified for the project includes Water and Sanitation Agency (WASA), Forest Department, River Ravi Commission, World Wildlife Fund (WWF), Lahore Waste Management Company (LWMC), Parks and Horticulture Authority (PHA), Lahore Chamber of Commerce, Urban Unit Punjab, Community residing in towns of Project Area, Industries and Small industrial Associations in Project Area. The detail concerns of stakeholders are given in Chapter- 8

8. Conclusion and Recommendation

The implementation of the proposed master plan project has overall positive impacts during operational stage (after development) both to community and country as well. By the development and implementation of the update IMP for the Lahore division,
Executive Summary

though there will be a relief for availability of planned facilities to the locals. The project is very much needed in order to have orderly future urban growth which will reduce pressure on our natural resources. Planned urban development has variety of positive impacts including intact natural resource with urban development, Public utilities and infrastructure facilities at their own places rather coming towards main district (Lahore), enhanced green areas through housing and building control guidelines, aesthetic uplifting, improved industrial sector and non-quantifiable socio economic benefits.

There are some negative impacts during planning, construction-implementation and operational phase of the project which can be mitigated as suggested in the report and overall positive impacts weigh these negative impacts.

Master Plan should check trends based on the past and present practices and should device strong legislation for the implementation of the proposed land uses in the Master Plan. In this regards, recommendation for the ineffective implementation of the previous IMPL should be kept in the mind.

After the detail environmental assessment, it is concluded that the project is environmentally feasible at proposed site only if the mitigation measures suggested in this EIA report are adopted during planning, construction and operational stages of the project. The mitigations suggested in the report are sufficient to successfully complete and run the project in an environment friendly manner.

Further, the key studies which need to be carried out at planning level and on later stages are given as under:-

- Climate Change Vulnerability Assessment
- Ground Water Quality and Aquifer Assessment
- Surface water Quality Assessment and its use
- Hydrological Study and Modeling of River Ravi
- Rainwater harvesting potential and implementation
- Detail Socio- Economic Study of Project Areas
- Social Impact Assessment
Executive Summary

- Transportation and Modeling Study
- Action Areas Plans and Subject Plans for each sector of development should also be prepared.
Table of Contents

Executive Summary .. I

1. POLICY, LEGAL AND ADMINISTRATIVE FRAMEWORK ... I

2. PROJECT DESCRIPTION .. II

3. Analysis of Alternatives .. III

4. ENVIRONMENTAL BASELINE CONDITIONS .. IV

 4.1. Natural and Biological Environment: .. VI

 4.2. Socio-Cultural Environment ... VI

5. Impacts and Mitigation ... VII

 5.1. Positive Impacts ... VII

 5.2. Environmental Impacts during Planning Stage and Mitigation Measures VII

 5.3. Environmental Impacts during Development Stage and Mitigations... XIII

 5.4. Environmental Impacts Resulting From Project Operation and Mitigations................................. XX

6. Environmental Management and Monitoring Plan (EMMP).. XXIII

7. Stake Holders Consultation .. XXIII

8. Conclusion and Recommendation ... XXIII

CHAPTER 1 INTRODUCTION ... 1

1.1. PROJECT DETAIL & BACK GROUND OF PROJECT .. 1

1.2. NEED FOR THE ENVIRONMENTAL ASSESSMENT .. 4

1.3. PURPOSE OF THE STUDY ... 5

1.4. OBJECTIVES OF EIA STUDY .. 5

1.5. APPROACH ADOPTED TO CONDUCT THE STUDY .. 6

 1.5.1. Review of Available Data ... 6

 1.5.2. Delineation of Area of Project Influence or Study Area .. 6
1.5.3. Environmental Baseline Survey of the Project 7
 1.5.3.1. PHYSICAL ENVIRONMENT .. 7
 1.5.3.2. ECOLOGICAL ENVIRONMENT ... 8
 1.5.3.3. SOCIAL AND CULTURAL ENVIRONMENT 8
1.5.4. PUBLIC AND STAKEHOLDERS CONSULTATION 8
1.5.5. Analysis of Data .. 9
1.5.6. Screening of Potential Environmental Impacts and Mitigation Measures... 9
1.5.7. Preparation of Environmental Management Plan (EMP) 9
1.6. STRUCTURE OF THE REPORT .. 9
1.7. EIA STUDY TEAM .. 10

CHAPTER 2 POLICY, LEGAL, AND ADMINISTRATIVE FRAMEWORK 1
2.1. GENERAL .. 1
2.2. NATIONAL POLICY FRAMEWORK .. 1
 2.2.1. Pakistan Environment Protection Act, 1997 1
 2.2.2. Punjab Environment Protection (Amendment) Act, 2012 4
 2.2.2.1. Pakistan Environment Protection (Review of IEE and EIA) Regulations, 2000 ... 4
 2.2.2.2. Policy and procedure for the filing, review and approval of environment assessments ... 6
 2.2.2.3. Guidelines for the Preparation and Review of Environmental Reports, 1997 6
 2.2.2.4. Guidelines for Public Consultation, 1997 7
 2.2.2.5. Guidelines for Sensitive and Critical Areas, 1997 7
 2.2.2.6. Sectoral Guidelines for Environmental Reports 8
 2.2.3. National Conservation Strategy .. 8
 2.2.4. National Environment Policy 2005 .. 9
 2.2.5. The National Forest Policy 2001 of Pakistan 9
2.2.6. PAKISTAN ENVIRONMENTAL IMPACT ASSESSMENT PROCEDURES

10

2.2.7. NATIONAL ENVIRONMENTAL QUALITY STANDARDS (NEQS), 2000 11

2.2.8. National Climate Change Policy, 2012 ... 12

13

2.2.9. Punjab Wildlife Protection, Preservation, Conservation and Management
Act, 1974 ... 13

2.2.10. International Treaties .. 14

2.2.10.1. Convention on the Conservation of Migratory Species of Wild
Animals (Bonn Convention) .. 14

2.2.10.2. Convention on International Trade in Endangered Species of Wild
Fauna and Flora (CITES) .. 16

2.2.11. Local Government Laws .. 18

2.2.11.1. Local Government: .. 18

2.2.11.2. Punjab Local Government Ordinance, 2001 19

2.2.11.3. Punjab Local Government Act, 2013 ... 20

2.2.11.4. Lahore Development Authority Act, 1975 .. 21

2.2.11.5. LDA Land Use Rules, 2014 ... 22

2.2.11.6. LDA (Master Plan) Rules, 2014 ... 23

2.2.11.7. LDA Building and Zoning Regulations, 2007 23

2.2.11.8. Integrated Master Plan for Lahore (IMPL) - 2021 25

2.2.12. Resettlement Laws .. 25

2.2.12.1. Constitutional Provisions .. 25

2.2.12.2. Land Acquisition Act, 1894 ... 26

2.2.13. THE WORLD BANK REGULATIONS .. 28

2.2.13.1. Provisions of Bank’s Safeguards Policies ... 28

2.2.14. OTHER ENVIRONMENT RELATED STATUTES 29
2.2.14.1. Pakistan Explosives Act, 1884 ... 29
2.2.14.2. The Forest Act, 1927 ... 29
2.2.14.3. Pakistan Penal Code, 1860 ... 30

CHAPTER3 PROJECT DESCRIPTION .. 31

3.1. GENERAL .. 31
3.2. LOCATION OF THE PROJECT .. 31
3.3. TOTAL AREA & DESIGN POPULATION OF THE PROJECT 32
3.4. DESCRIPTION OF PROJECT AREA-LAHORE DIVISION 32

3.4.1. LAHORE ... 32
3.4.2. NANKANA SAHIB ... 33
3.4.3. KASUR ... 34
3.4.4. SHIEKHPURA ... 36

3.5. DESCRIPTION OF SITE PROJECT AREAS IN LAHORE DIVISION 37

3.5.1. DISTRICT LAHORE ... 37

3.5.1.1. PROJECT AREA (PA)-LHR-1- (FEROZPUR ROAD AND BRB CANAL) 37

3.5.1.2. PROJECT AREA Site-LHR-2 (Raiwind City) 41

Proposed Road Network for LHR-2 (Raiwind City) 43

3.5.1.3. PROJECT AREA PA- LHR 03 (Chunia Industrial Estate) 44

3.5.1.4. PROJECT AREA (PA)-LHR-4 (MULTAN ROAD, SUE ASAL ROAD, RAIWIND AND MANGA) ... 47

3.5.2. DISTRICT NANKANA SAHIB .. 51

3.5.2.1. Project Area (PA)-NSB-01(Mandi Faizabad) 51

3.5.2.2. Project Area (PA) -NSB-02 (Syed Wala) 54

3.5.2.3. Project Area (PA)-NSB-03 (Bucheki) 58

3.5.2.4. Project Area (PA)-NSB-04 (Nankana Sahib) 62

3.5.3. DISTRICT KASUR ... 85
3.5.3.1.	Project Area (PA)-K-01 (Kasur) .. 85
3.5.3.2.	Project Area (PA)-K-02 (Mustafabad) ... 88
3.5.3.3.	Project Area (PA)-K-03 (Industrial Estate) .. 92
3.5.3.4.	Project Area (PA)-K-04 (Khudian Khas) ... 95
3.5.3.5.	Project Area (PA)-K-05 (Rao Khan Wala) .. 99
3.5.3.6.	Project Area-K-06 (Raja jang) ... 101
3.5.3.7.	Project Area (PA)-K-07 (Kot Radha Kishan) ... 104
3.5.3.8.	Project Area (PA)-K-08- (Changa Manga) .. 108
3.5.3.9.	Project Area (PA) -K-09- (Bhae Pheru) ... 112
3.5.3.10.	Project Area (PA)-K-10- (Jamber) ... 115
3.5.3.11.	Project Area (PA)-K-11 Jamber Industrial Estate 118
3.5.3.12.	Project Area (PA)-K-12 (Chunian) .. 121
3.5.3.13.	Project Area (PA)-K-13 (AllahAbad) .. 125
3.5.3.14.	Project Area (PA)-K-14 (Kangan Pur) ... 129
3.5.3.15.	Project Area (PA)-K-15 (Pattoki) ... 132
3.5.3.16.	Project Area Site-K-16(Talwandi) .. 135
3.5.4.	DISTRICT SHEIKHUPURA ... 139
3.5.4.1.	PA-SKP-1(Sheikhupura City) ... 139
3.5.4.2.	Project Area (PA)-SKP-2- (Muridke). ... 143
3.5.4.3.	Project Area (PA)-SKP-3 (Ferozwala) ... 146
3.5.4.4.	Project Area (PA)-SKP-4 (Farooqabad) ... 149
3.5.4.5.	Project Area (PA)-SKP-5 (Narangmandi) ... 153
3.5.4.6.	Project Area (PA)-SKP-6- (Sharqpur) .. 156
3.5.4.7.	Project Area (PA)-SKP-7 (Safdarabad) ... 158
3.5.4.8.	Project Area (PA)-SKP-8(Bhiki) .. 162
3.5.4.9.	Project Area (PA)-SKP-9 (Ferozwatwan) ... 165
3.5.4.10.	Project Area (PA)-SPA-10 (Manawala) .. 168
Table of Contents

3.5.4.11. Project Area (PA)-SKP-11 (Khanqah Dogran) 172
3.5.4.12. Project Area (PA)-SKP-12 (Jandiala Sher Khan) 175
3.5.4.13. Project Area (PA)-SKP-13 (Jhabran) 177
3.5.4.1. Project Area (PA)-SKP-14 (Jaranwala Road) 180
3.5.4.2. Project Area (PA)-SKP-15 (Lahore Muridke Road) 183
3.5.4.3. PA-SKP-16 (Lahore Murideke Road) 186
3.5.4.4. PA-SKP-17 Lahore Shiekhpura Road 188
3.5.4.5. Site-SKP-18 (Lahore Sargoda Road) 190

3.6. INFRASTRUCTURE AND UTILITY SYSTEM REQUIREMENTS 193

3.6.1. Electricity .. 193
3.6.2. Natural Gas Requirement .. 193
3.6.3. Water Requirement .. 193
3.6.4. Sewerage Requirement ... 193
3.6.5. Solid Waste Management .. 194
3.6.6. Road Network ... 194

CHAPTER 4 ANALYSIS OF ALTERNATIVES .. 197

4.1. General ... 197
4.2. No Project Option (NPO) ... 197
4.3. Planning Efforts .. 198

4.3.1. Master Plan for Greater Lahore, 1966 198
4.3.2. Lahore Urban Development and Traffic Study (LUDTS), 1980 200
4.3.3. Integrated Master Plan for Lahore (IMPL) -2021 201

4.4. Location Alternatives ... 206

4.5. Layout - Alternatives ... 207

4.5.1. Criteria .. 207
4.5.2. Residential Areas ... 208
4.5.3. Industrial Areas ... 208
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5.4. Transportation Facilities</td>
<td>209</td>
</tr>
<tr>
<td>4.5.5. Agriculture Areas</td>
<td>210</td>
</tr>
<tr>
<td>4.5.6. Future Development of the City</td>
<td>210</td>
</tr>
<tr>
<td>4.5.7. Recreational Facilities</td>
<td>212</td>
</tr>
<tr>
<td>4.6. Design Alternatives</td>
<td>212</td>
</tr>
<tr>
<td>4.7. Conclusion</td>
<td>213</td>
</tr>
<tr>
<td>CHAPTER 5 DESCRIPTION OF BASELINE ENVIRONMENT</td>
<td>214</td>
</tr>
<tr>
<td>5.1. GENERAL</td>
<td>214</td>
</tr>
<tr>
<td>5.2. PHYSICAL ENVIRONMENT</td>
<td>214</td>
</tr>
<tr>
<td>5.2.1. Topography</td>
<td>214</td>
</tr>
<tr>
<td>5.2.2. Geology</td>
<td>214</td>
</tr>
<tr>
<td>5.2.3. Seismology</td>
<td>215</td>
</tr>
<tr>
<td>5.2.4. Soil</td>
<td>215</td>
</tr>
<tr>
<td>5.2.5. Land Use</td>
<td>216</td>
</tr>
<tr>
<td>5.2.6. Climate</td>
<td>217</td>
</tr>
<tr>
<td>5.2.7. Water Resources</td>
<td>220</td>
</tr>
<tr>
<td>5.2.7.1. Surface Water</td>
<td>220</td>
</tr>
<tr>
<td>5.2.7.2. Ground Water</td>
<td>221</td>
</tr>
<tr>
<td>5.2.8. Hydrology</td>
<td>221</td>
</tr>
<tr>
<td>5.3. Natural and Biological Environment</td>
<td>223</td>
</tr>
<tr>
<td>5.3.1.1. Flora and Fauna</td>
<td>224</td>
</tr>
<tr>
<td>5.3.1.2. Vegetables</td>
<td>224</td>
</tr>
<tr>
<td>5.3.1.3. Crops and Fodder</td>
<td>224</td>
</tr>
<tr>
<td>5.3.1.4. Wildlife Sanctuaries and Game Reservoirs</td>
<td>224</td>
</tr>
<tr>
<td>5.3.1.5. Rare or Endangered Species</td>
<td>225</td>
</tr>
<tr>
<td>5.4. Air Quality</td>
<td>225</td>
</tr>
<tr>
<td>5.5. Noise Levels</td>
<td>225</td>
</tr>
</tbody>
</table>
5.6. Socio Economic Environment ... 226

5.6.1. Archaeological and Historical Monuments/Sites 236

CHAPTER 6 SCREENING OF POTENTIAL ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES ... 241

6.1. General... 241

6.2. Methodology.. 241

6.3. Approach Adopted for Impacts Identification and Mitigation Measures 248

6.4. Positive Environmental Impacts Resulting from the Project Operation 251

6.5. Environmental Analysis and Results for Individual Project Areas 253

6.5.1. DISTRICT LAHORE ... 253

6.5.2. District Nankana Sahib ... 281

6.5.3. District Kasur .. 306

6.5.4. DISTRICT SHEIKHUPURA ... 358

6.5.1.1. Environmental Impacts Due to Proposed Amendments in PA-SKP-1 (Sheikhupura City): ... 359

6.5.1.2. Conclusion:... 362

6.6. Mitigations for Site Analysis Environmental Impacts 437

6.7. Environmental Impacts during Planning Stage and Mitigation Measures 444

6.7.1. Groundwater Resources ... 444

6.7.2. Surface Water Resources and Quality ... 445

6.7.3. Flood .. 446

6.7.4. Climate Change .. 447

6.7.5. Land Resources .. 448

6.7.6. High Voltage Transmission Lines ... 448

6.7.7. Transportation .. 448

6.7.8. Solid Waste ... 449

6.8. Mitigation Measures during Planning Stage .. 449

6.8.1. Ground Water ... 449
The efficient transport system for Lahore Division should be designed and part of detail master plan. The traffic reduction and efficient transport strategy should be developed that mainly include:

6.8.2. Surface Water Resource and Quality .. 451
6.8.3. Flood .. 452
6.8.4. Climate Change .. 452
6.8.5. Land Resources .. 453
6.8.6. High Voltage Transmission Lines ... 453
6.8.7. Transportation .. 453

6.8.8. Solid Waste .. 454

6.9. Environmental Impacts during Development Stage and Mitigations 454

6.9.1. Physical Environment .. 454
 6.9.1.1. Land Resources ... 454
 6.9.1.2. Water Resources .. 456
 6.9.1.3. Solid and Liquid Waste .. 456
 6.9.1.4. Ambient Air Quality ... 456
 6.9.1.5. Noise Level ... 457

6.9.2. Ecological Environment .. 457

6.9.3. Socio-Cultural Environment .. 458
 6.9.3.1. Local Communities/Workforce .. 458
 6.9.3.2. Loss of Livelihood ... 459
 6.9.3.3. Disruption of Cultural and Historical Properties 459
 6.9.3.4. Cultural Issues ... 459
 6.9.3.5. Gender Issues ... 459

6.10. Mitigation Measures ... 460

6.10.1. Physical Environment .. 460
 6.10.1.1. Land Resources ... 460
 6.10.1.2. Water Resources ... 462
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.10.1.3. Solid and Liquid Waste</td>
<td>463</td>
</tr>
<tr>
<td>6.10.1.4. Ambient Air Quality</td>
<td>464</td>
</tr>
<tr>
<td>6.10.1.5. Noise Levels</td>
<td>465</td>
</tr>
<tr>
<td>6.10.2. Ecological Environment</td>
<td>465</td>
</tr>
<tr>
<td>6.10.3. Socio-Cultural Environment</td>
<td>466</td>
</tr>
<tr>
<td>6.10.3.1. Local Communities/Workforce</td>
<td>466</td>
</tr>
<tr>
<td>6.10.3.2. Loss of Livelihood</td>
<td>466</td>
</tr>
<tr>
<td>6.10.3.3. Disruption of Historical Properties</td>
<td>467</td>
</tr>
<tr>
<td>6.10.3.4. Cultural Issues</td>
<td>467</td>
</tr>
<tr>
<td>6.10.3.5. Gender Issues</td>
<td>467</td>
</tr>
<tr>
<td>6.11. Environmental Impacts Resulting From Project Operation and Mitigations</td>
<td>468</td>
</tr>
<tr>
<td>6.11.1. Physical Environment</td>
<td>468</td>
</tr>
<tr>
<td>6.11.2. Ecological Environment</td>
<td>470</td>
</tr>
<tr>
<td>6.11.3. Socio-Cultural Environment</td>
<td>470</td>
</tr>
<tr>
<td>6.12. Mitigation Measures</td>
<td>471</td>
</tr>
<tr>
<td>6.12.1. Physical Environment</td>
<td>471</td>
</tr>
<tr>
<td>6.12.2. Socio-Cultural Environment</td>
<td>472</td>
</tr>
<tr>
<td>7.1. General</td>
<td>473</td>
</tr>
<tr>
<td>7.2. Structure of EMMP</td>
<td>474</td>
</tr>
<tr>
<td>7.3. Legislation, Guidelines and Environmental Standards</td>
<td>474</td>
</tr>
<tr>
<td>7.3.1. Effluents</td>
<td>474</td>
</tr>
<tr>
<td>7.3.2. Gaseous Emission</td>
<td>475</td>
</tr>
<tr>
<td>7.3.3. Ambient Air Quality</td>
<td>475</td>
</tr>
<tr>
<td>7.3.4. Noise</td>
<td>475</td>
</tr>
<tr>
<td>7.3.5. Drinking Water</td>
<td>475</td>
</tr>
</tbody>
</table>
7.3.6. Disaster Management ... 475

7.4. Roles and Responsibilities .. 475

7.4.1. Lahore Development Authority (LDA) .. 476
 7.4.1.1. Planning and Design Stage .. 478
 7.4.1.2. Pre-Construction Phase .. 479
 7.4.1.3. Construction Phase .. 480
 7.4.1.4. Operation Stage ... 480

7.4.2. Supervisory Consultants .. 480

7.4.3. Contractor .. 482

7.4.4. PMU & District/ Local Government .. 482

7.4.5. National and Provincial Disaster Management Authority 483

7.4.6. Roles and Responsibilities .. 485

7.4.7. EPA- Punjab .. 486

7.5. Environmental Mitigation Management Matrix 487

7.6. Environmental Monitoring Program .. 488

7.6.1. Objectives ... 488
 7.6.1.1. Activity Monitoring .. 489
 7.6.1.2. Effects Monitoring ... 489
 7.6.1.3. Physical Environment .. 489
 7.6.1.4. Ecological Environment ... 490
 7.6.1.5. Socioeconomic Environment .. 490
 7.6.1.6. Post-Project Monitoring ... 490

7.7. Communication and Documentation Plan .. 494

7.7.1. Kick-off Meeting ... 494

7.7.2. Meetings and Reports ... 494

7.7.3. Social Complaints Register ... 494

7.7.4. Change Record Register ... 495
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.7.5.</td>
<td>Non-Compliance Record Register</td>
<td>495</td>
</tr>
<tr>
<td>7.7.6.</td>
<td>Final Monitoring Report</td>
<td>495</td>
</tr>
<tr>
<td>7.7.7.</td>
<td>Photographic Record</td>
<td>495</td>
</tr>
<tr>
<td>7.8.</td>
<td>Change Management Plan</td>
<td>496</td>
</tr>
<tr>
<td>7.8.1.</td>
<td>Additions to the EMMP</td>
<td>496</td>
</tr>
<tr>
<td>7.8.2.</td>
<td>Changes to the Operation</td>
<td>496</td>
</tr>
<tr>
<td>7.8.2.1.</td>
<td>First Order</td>
<td>496</td>
</tr>
<tr>
<td>7.8.2.2.</td>
<td>Second Order</td>
<td>497</td>
</tr>
<tr>
<td>7.8.2.3.</td>
<td>Third Order</td>
<td>498</td>
</tr>
<tr>
<td>7.8.3.</td>
<td>Disaster Management Plan</td>
<td>498</td>
</tr>
<tr>
<td>7.8.3.1.</td>
<td>Flood</td>
<td>498</td>
</tr>
<tr>
<td>7.8.3.2.</td>
<td>Earthquake</td>
<td>499</td>
</tr>
<tr>
<td>7.8.3.3.</td>
<td>Out-Break of Diseases</td>
<td>501</td>
</tr>
<tr>
<td>7.8.3.4.</td>
<td>Terrorist Activity</td>
<td>502</td>
</tr>
<tr>
<td>7.8.3.5.</td>
<td>Fire</td>
<td>502</td>
</tr>
<tr>
<td>7.8.4.</td>
<td>TRAFFIC MANAGEMENT PLAN (TMP)</td>
<td>503</td>
</tr>
<tr>
<td>7.8.5.</td>
<td>MATERIAL TRANSPORTATION PLAN (MTP)</td>
<td>504</td>
</tr>
<tr>
<td>7.8.5.1.</td>
<td>Material Transportation HSE Arrangements</td>
<td>504</td>
</tr>
<tr>
<td>7.8.5.2.</td>
<td>Material Transportation Documentation</td>
<td>504</td>
</tr>
<tr>
<td>7.8.6.</td>
<td>Archaeological Chance Find Procedure</td>
<td>505</td>
</tr>
<tr>
<td>7.8.6.1.</td>
<td>Procedure</td>
<td>505</td>
</tr>
<tr>
<td>7.9.</td>
<td>Training Program</td>
<td>506</td>
</tr>
<tr>
<td>7.9.1.</td>
<td>Objectives</td>
<td>506</td>
</tr>
<tr>
<td>7.9.2.</td>
<td>Roles and Responsibilities</td>
<td>506</td>
</tr>
<tr>
<td>7.9.3.</td>
<td>Training Log</td>
<td>507</td>
</tr>
<tr>
<td>7.9.4.</td>
<td>Training Needs Assessment</td>
<td>507</td>
</tr>
<tr>
<td>7.9.5.</td>
<td>Training Material</td>
<td>507</td>
</tr>
</tbody>
</table>
7.10. Environmental Management and Monitoring Cost

- 7.10.1. Environmental Management Cost
- 7.10.2. Environmental Monitoring Cost
- 7.10.3. Training Cost

7.11. Mitigation Management Matrix (MMM)

CHAPTER 8 STAKEHOLDERS CONSULTATION

- 8.1. IDENTIFICATION OF STAKEHOLDERS
- 8.2. MAIN VIEWS AND CONCERNS OF THE STAKEHOLDERS
 - 8.2.1. Views and Concerns of Lahore Waste Management Company
 - 8.2.2. Views and Concerns of Urban Unit Punjab
 - 8.2.3. Views and Concerns of Community Sultan Park - Muredke
 - 8.2.4. Views and Concerns of Community at Sach Soda Farooqabad
 - 8.2.5. Views and Concerns of Community at Mala Ram Lahore South East
 - 8.2.6. Views and Concerns of Centaury Paper and Board Mill - Industry- Kasur
 - 8.2.7. Views and Concerns of Panther Tyres - Industry- Lahore Shiekhpura Road
 - 8.2.8. Views and Concerns of Dr. Obaid UET Lahore

CHAPTER 9 CONCLUSIONS AND RECOMMENDATIONS

- 9.1. Conclusions and Recommendations
 - 9.1.1. Ground Water
 - 9.1.2. Surface Water Resources and Quality
 - 9.1.3. Flood
 - 9.1.4. Climate Change
 - 9.1.5. Land Resources
 - 9.1.6. High Voltage Transmission Lines
 - 9.1.7. Transportation
 - 9.1.8. Solid Waste
Table of Contents

APPENDICES

- Appendix-I .. 540
- Ecological Study Report ... 540
- Appendix-II .. 541
- Environmental Monitoring Report 541
- Appendix-III ... 542
- Hydrological Study Report .. 542
- Appendix-IV .. 543
- Framework/ Guidelines for Strategic Environmental Assessment (SEA) 543

ANNEXURES

- Annex-I .. 545
- Map of Proposed Landfill Sites 545
- Annex-II .. 546
- Biodiversity Map of Project Site 546
- Annexure-III .. 547
- Map of Flood Prone Areas .. 547
- Annexure-IV .. 548
- Map of Environmental Locations 548
- Annexure-V ... 549
- Photo Log of Project Site .. 549
 - Social Baseline Data and Public Consultation 550
 - View of River Ravi .. 554
 - View of Rice Fields ... 556
 - Lakhu Der Proposed Landfill Site 556
 - Housing Societies in Project Site 557
 - View of Railway Track near Sheikhupura 557
 - Site Area Photographs .. 558
<table>
<thead>
<tr>
<th>Table of Contents</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Annexure-VI</td>
<td>564</td>
</tr>
<tr>
<td>Environmental & Social Baseline Data Sheets</td>
<td>564</td>
</tr>
<tr>
<td>Annexure-VII</td>
<td>565</td>
</tr>
<tr>
<td>Quantification of Site Evaluation Environmental Impacts</td>
<td>565</td>
</tr>
</tbody>
</table>
List of Tables

Table 1.1 EIA Study Team ... 10

Table 5.1 Existing Landuse Details of Project Areas................................. 216
Table 5.2 Proposed Landuse Details of Project Areas 217
Table 5.3 Surface Water Bodies in Project Areas 220
Table 5.4 Detail of the Survey Villages .. 226
Table 5.5 Available Health Facilities ... 229
Table 5.6 Availability of Educational Facility ... 230
Table 5.7 Availability of Electricity ... 231
Table 5.8 Availability of Natural Gas Facility .. 231
Table 5.9 Availability of Landline Telephone Facility 232
Table 5.10 Availability of Transport Facility .. 233
Table 5.11 Types of Roads Available to Villages/Towns 233
Table 5.12 Availability of Bank Facility .. 234
Table 5.13 Post Office Facility ... 235
Table 5.14 Domestic Water Supply System ... 235
Table 5.15 Available Mosques in Project Area 236
Table 5.16 Graveyards in Project Area ... 237
Table 5.17 Shrines in Project Area ... 237
Table 5.18 Irrigation System Usage in Project Area 238

Table 7.1 Recommended Compliance Monitoring Protocol for Physical, Ecological and Social Environment ... 491
Table 7.2 Recommended Effects Monitoring Protocol 492
Table 7.3 Training Program Material ... 507
Table 7.4 Environmental Management Plan for Lahore Master Plan Project 510

Table 8.1 List of Scoping Sessions/Group Discussions carried out with the Stakeholders ... 529
List of Figures

Figure 3.1: Location of Project Area - Lahore Division .. 31
Figure 3.2: Location Map of District Lahore ... 33
Figure 3.3: Location Map of District Nankana Sab ... 34
Figure 3.4: Location Map of District Kasur ... 35
Figure 3.5: Location Map of District Sheikhupura ... 37
Figure 3.6: Existing Landuse map for site LHR-1- (FEROZPUR ROAD AND BRB CANAL) .. 38
Figure 3.7: Proposed land use for LHR-1- (FEROZPUR ROAD AND BRB CANAL) 39
Figure 3.8: Proposed Road Network for LHR-1- (FEROZPUR ROAD AND BRB CANAL) ... 40
Figure 3.9: Existing Landuse map for LHR-2 (Raiwind City) ... 41
Figure 3.10: Proposed land use for LHR-2 (Raiwind City) ... 43
Figure 3.11: Proposed road network for LHR-2 (Raiwind City) 44
Figure 3.12: Existing land use map for LHR 03 (Chunia Industrial Estate) 45
Figure 3.13: Site-LHR-03 (Chunian Industrial Estate) ... 46
Figure 3.14: Proposed Road Network for LHR-03 (Chunian Industrial Estate) 47
Figure 3.15: Existing Land Use for (PA)-LHR-4 (MULTAN ROAD, SUE ASAL ROAD, RAIWIND AND MANGA) ... 48
Figure 3.16: Proposed Land use map for LHR-4 (MULTAN ROAD, SUE ASAL ROAD, RAIWIND AND MANGA) ... 49
Figure 3.17: Proposed Road Network for (PA)-LHR-4 (MULTAN ROAD, SUE ASAL ROAD, RAIWIND AND MANGA) ... 51
Figure 3.18: Existing Land uses for (PA)-NSB-01(Mandi Faizabad) 52
Figure 3.19: Proposed Land Use Map for NSB-01 (Mandi Faizabad) 53
Figure 3.20: Proposed road network for NSB-01 (Mandi Faizabad) 54
Figure 3.21: Existing Land uses for (PA)-NSB-02 (Syed Wala) 55
Figure 3.22: Proposed Land Use Map for NSB-02 (Syed Wala) 56
Figure 3.23: Proposed road network for NSB-02 (Syed Wala) 58
Figure 3.24: Existing Land uses for NSB-03 (Bucheki) ... 59
Figure 3.25: Proposed Land Use Map for NSB-03 (Bucheki) 60
Figure 3.26: Proposed Road Network for NSB-03 (Bucheki) 62
Figure 3.27: Existing Land uses for NSB-04 (Nankana Sahib) 63
Figure 3.28: Proposed Land uses of SITE-NSB-04 (Nankana Sahib)................. 64
Figure 3.29: Proposed Roads of SITE-NSB-04 (Nankana Sahib).................... 65
Figure 3.30: Existing Land uses for NSB-05 (Shahkot-I)............................. 66
Figure 3.31: Proposed Land Use Map for NSB-05 (Shahkot-I)....................... 67
Figure 3.32: Proposed Road Network for NSB-05-(Shahkot-I)....................... 68
Figure 3.33: Existing Land uses for NSB-06 (Sangla Hill)............................ 69
Figure 3.34: Proposed Land Use Map for NSB-06 (Sangla Hill)..................... 70
Figure 3.35: Proposed Road Network for NSB-06 (Sangla Hill)..................... 72
Figure 3.36: Existing Land uses for NSB-07 (More Khuda).......................... 73
Figure 3.37: Proposed Land Use Map for NSB-07 - (Morr Khunda)................. 74
Figure 3.38: Proposed Road Network for NSB=07 (Morr Khunda).................. 75
Figure 3.39: Existing Land uses for NSB-08 (Shahkot-II)............................ 76
Figure 3.40: Proposed Land Use Map for NSB-08 (Shahkot-II)..................... 77
Figure 3.41: Proposed Road Network for NSB-08 (Shahkot-II)..................... 79
Figure 3.42: Existing Land uses for NSB-09 (Warburton)............................ 80
Figure 3.43: Proposed Land Use Map for NSB-09 (Warburton)..................... 81
Figure 3.44: Proposed Road Network for NSB-09 (Warburton)..................... 82
Figure 3.45: Existing Land uses for NSB-10 (Shahkot-III)......................... 83
Figure 3.46: Proposed Land Use Map for NSB-10 (Shahkot-III).................... 84
Figure 3.47: Proposed Roads Network for NSB-10 (Shahkot-III)................... 85
Figure 3.48: Existing land use for k-01 Kasur city site.............................. 86
Figure 3.49: Roads Network for SITE-K-01 (Kasur City)............................. 87
Figure 3.50: Existing Land Use for K-02 Mustafabad Site.......................... 89
Figure 3.51 Proposed Land Use for K-02 Mustafabad Site.......................... 91
Figure 3.52: Road Network map for K-02 Mustafabad Site.......................... 92
Figure 3.53: Existing Land Use for K-03 Industrial Estate Site..................... 93
Figure 3.54 Proposed Land Uses for K-03(Kasur Industrial Estate).............. 94
Figure 3.55: Road Network Map for K-03 Kasur Industrial Estate............... 95
Figure 3.56: Existing Land uses for k-04 Khudian Khas Site....................... 96
Figure 3.57 Proposed Land uses for k-04 Khudian Khas Site....................... 97
Figure 3.58: Road Network map for k-04 Khudian Khas Site....................... 98
Figure 3.59: Existing Land Uses for K-05 Rao Khan Wala Site.................... 99
Figure 3.60 Proposed Land Uses for K-05 Rao Khan Wala Site.................... 100
Figure 3.61: Road Network for k-05 Rao Khan wala Site.......................... 101
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.62</td>
<td>Existing Land uses for K-06 Raja Jang Site</td>
<td>102</td>
</tr>
<tr>
<td>3.63</td>
<td>Proposed Land Uses for K-06 Raja Jang Site</td>
<td>103</td>
</tr>
<tr>
<td>3.64</td>
<td>Roads Network Map for K-06 Raja Jang Site</td>
<td>104</td>
</tr>
<tr>
<td>3.65</td>
<td>Proposed land uses for K-07 Kot Radha Kishan Site</td>
<td>105</td>
</tr>
<tr>
<td>3.66</td>
<td>Proposed Land uses for K-07 Kot Radha Kishan Site</td>
<td>106</td>
</tr>
<tr>
<td>3.67</td>
<td>Roads Network Maps for K-07 Kot Radha Kishan Site</td>
<td>108</td>
</tr>
<tr>
<td>3.68</td>
<td>Existing Land use for K-08 Changa Manga Site</td>
<td>109</td>
</tr>
<tr>
<td>3.69</td>
<td>Proposed Land Uses for K-08 Changa Manga Site</td>
<td>111</td>
</tr>
<tr>
<td>3.70</td>
<td>Road Network Map for K-08 Changa Manga Site</td>
<td>112</td>
</tr>
<tr>
<td>3.71</td>
<td>Existing Land Use Map</td>
<td>113</td>
</tr>
<tr>
<td>3.72</td>
<td>Proposed Land Use for K-09 Site Bhai Pheru</td>
<td>114</td>
</tr>
<tr>
<td>3.73</td>
<td>Proposed Road Network Map for K-09 Bhai Pheru Site</td>
<td>115</td>
</tr>
<tr>
<td>3.74</td>
<td>Existing Land Use for K-10 Jamber</td>
<td>116</td>
</tr>
<tr>
<td>3.75</td>
<td>Proposed Land use Map for K-10 Site Jamber</td>
<td>117</td>
</tr>
<tr>
<td>3.76</td>
<td>Road Network for K-10 Jamber Site</td>
<td>118</td>
</tr>
<tr>
<td>3.77</td>
<td>Existing Land Use for Site k-11 Jamber Industrial Estate</td>
<td>119</td>
</tr>
<tr>
<td>3.78</td>
<td>Proposed Land Use for k-11 Jamber Industrial Esate</td>
<td>120</td>
</tr>
<tr>
<td>3.79</td>
<td>Road Network for SITE-K-11 (Jamber Industrial Estate)</td>
<td>121</td>
</tr>
<tr>
<td>3.80</td>
<td>Existing land use for K-12 Chunian city site</td>
<td>122</td>
</tr>
<tr>
<td>3.81</td>
<td>Proposed Land use For K-12 Chunian City Site</td>
<td>123</td>
</tr>
<tr>
<td>3.82</td>
<td>Existing Situation Map and Proposed Project Area Master Plan of Allahabad</td>
<td>125</td>
</tr>
<tr>
<td>3.83</td>
<td>Existing Land uses for K-13 AllahAbad</td>
<td>126</td>
</tr>
<tr>
<td>3.84</td>
<td>Proposed Land Use for K-13 AllahAbad</td>
<td>127</td>
</tr>
<tr>
<td>3.85</td>
<td>Road Network Map for k-13 AllahAbad</td>
<td>129</td>
</tr>
<tr>
<td>3.86</td>
<td>Road Network Map for k-14 Kangan Pur</td>
<td>129</td>
</tr>
<tr>
<td>3.87</td>
<td>proposed land use for K-14 Kanganpur Site</td>
<td>130</td>
</tr>
<tr>
<td>3.88</td>
<td>Roads Network Map for K-14 Kangan Pur Site</td>
<td>132</td>
</tr>
<tr>
<td>3.89</td>
<td>Existing Land Uses for K-15 Pattoki Site</td>
<td>133</td>
</tr>
<tr>
<td>3.90</td>
<td>Proposed Land Use</td>
<td>134</td>
</tr>
<tr>
<td>3.91</td>
<td>Roads Network Map for SITE-K-15 (Pattoki City)</td>
<td>135</td>
</tr>
<tr>
<td>3.92</td>
<td>Existing Land use for K-16 Talwandi Site</td>
<td>136</td>
</tr>
<tr>
<td>3.93</td>
<td>Proposed Land use for K-16 Talwandi Site</td>
<td>137</td>
</tr>
<tr>
<td>3.94</td>
<td>Road Network Map for K-16 Talwandi Site</td>
<td>138</td>
</tr>
</tbody>
</table>
List of Figures

Figure 3.95: Existing Land Uses for PA-SKP-1 (Sheikhupura City) ... 139
Figure 3.95: Proposed Land Uses for PA-SKP-1 (Sheikhupura City) ... 141
Figure 3.96: Roads Network for PA-SKP-1 (Sheikhupura City) ... 142
Figure 3.98: Existing Land Uses for SKP-2 (Muridke) ... 143
Figure 3.99: Proposed Land uses for Skp-2- Muridke ... 145
Figure 3.100: Roads Network map for Skp-2-Muridke ... 146
Figure 3.101: Existing Land uses for Skp-03-Ferzwala ... 147
Figure 3.102: Proposed Land Uses for skp-3-Ferozwala ... 148
Figure 3.103: Roads Network for Skp-3-Ferozwala ... 149
Figure 3.104: Existing Land Uses for Skp-4-FarooqAbad .. 150
Figure 3.105: Proposed Land Uses for Skp-4-Farooqabad .. 151
Figure 3.106: Roads Network for Skp-3-Farooqabad ... 152
Figure 3.107: Existing land uses for skp-5-Narangmandi ... 153
Figure 3.108: Proposed land use for skp-5 Narang Mandi site .. 154
Figure 3.109: Proposed Road Network for SKP-5 Narang Mandi ... 155
Figure 3.110: Existing Land for Skp-6-Sharaqpur ... 156
Figure 3.111: Proposed land used for skp-06 Sharqpur ... 158
Figure 3.112: Existing land use for skp-7 (Safdarabad) ... 159
Figure 3.113: Proposed land use for Skp-7-Safdarabad ... 160
Figure 3.114: Roads Network for Skp-7-Safdarabad ... 162
Figure 3.115: Existing land uses for skp-08-Bhikki ... 162
Figure 3.116: Proposed land uses for skp-8-Bhikhi ... 164
Figure 3.117: Roads Network for skp-8-Bhikki and Kharian ... 165
Figure 3.118: Existing land uses for skp-9-Ferozwatwan .. 166
Figure 3.119: Proposed land uses for skp-9-Ferozwatwan .. 167
Figure 3.120: Roads Network for Skp-9-Ferozwatwan ... 168
Figure 3.121: Existing land uses for skp-10-Manawala ... 169
Figure 3.122: Proposed Land uses for skp-10 Manawala .. 170
Figure 3.123: Roads Network for skp-10-Manawala ... 171
Figure 3.124: Existing Land uses for Skp-11-Khanqah Dogran .. 172
Figure 3.125: Proposed Land Uses for Skp-11-Khanqah Dogran ... 173
Figure 3.126: Roads Network for Skp-11-Khanqah Dogran ... 174
Figure 3.127: Existing Land uses for skp-12-Jandiala-Sher Khan ... 175
Figure 3.128: Proposed land uses for skp-12 Jandiala Sher Khan .. 176

XLV
List of Figures

Figure 3.129: Roads Network for skp-12-Jandiala Sher Khan 177
Figure 3.130: Existing Land uses for skp-13-Jabran .. 178
Figure 3.131: Proposed Land uses for skp-13-Jhabran ... 179
Figure 3.132: Roads Network for Skp-13-Jhabran .. 180
Figure 3.133: .. 181
Figure 3.134: Proposed landuse map for (PA)-SKP-14 (Jaranwala Road) 182
Figure 3.135: Existing landuse map for SKP-15 (Lahore Muridke Road) 183
Figure 3.136: Proposed Land use for SKP-15 (Lahore Muridke Road) 184
Figure 3.137: Proposed Road Network for SKP-15 (Lahore Muridke Road) 185
Figure 3.138: Existing land use map for SKP -16 Lahore Muridke Road 186
Figure 3.139: Proposed landuse map for SKP-16 Lahore Muridke Road 187
Figure 3.140: Existing land use for SKP-17 Lahore Shiekhpura Road 188
Figure 3.141: Proposed Landuse for PA-SKP-17 Lahore Shiekhpura Road 189
Figure 3.142: Existing Land use Map for SKP-18 (Lahore Sargoda Road) 190
Figure 3.143: Proposed landuse map for SKP-18 (Lahore Sargoda Road) 191
Figure 3.144: Proposed Road Network for SKP-18 (Lahore Sargoda Road) 192
Figure 3.53 Existing Road Network Map of Lahore Division 195
Figure 3.54 Proposed Road Network Map of Lahore Division 196

Figure 4.1 Master Plan for Greater Lahore, 1966 .. 199
Figure 4.2 Lahore Urban Development and Traffic Study, 1980 201
Figure 4.3 Integrated Master Plan for Lahore - 2021 ... 203

Figure 5.1 Seismic Zone of Pakistan (Geological Survey of Pakistan) 215
Figure 5.2 Existing Landuse Map of Lahore Division .. 216
Figure 5.5 Temperature Data of Lahore Region (Data Source: Climatic Data Processing Centre (CDPC), Pakistan Meteorological Department, Karachi) 218
Figure 5.6 Average Rainfall of Lahore Region (Data Source: Climatic Data Processing Centre (CDPC), Pakistan Meteorological Department, Karachi) 218
Figure 5.7 Average Relative Humidity of Lahore Region (Data Source: Climatic Data Processing Centre (CDPC), Pakistan Meteorological Department, Karachi) 219
Figure 5.8 Average wind speed of Lahore Region (Data Source: Climatic Data Processing Centre (CDPC), Pakistan Meteorological Department, Karachi) 220
Figure 5.9 Watershed of Punjab Province ... 222

Figure 7.1 Organogram of Lahore Development Authority 478
Subjective to the extension of Lahore Development Authority with its jurisdiction expanded to the scope of Lahore Division, the Authority has decided to prepare a comprehensive Master Plan for the whole Lahore Division which is hereinafter referred to as “the Project Area”. The Project site is geographically located between 30°38’31.93“E to 32°03’37.99” and 73°17’37.86” to 74°42’05.83”. The site is surrounded by the India in east, Gujranwala in the north, Faisalabad in the west and Sahiwal & Pakpattan in the south. The project site is accessible through all major roads like Grand Trunk Road, Ring Road Multan Road, Ferozpur Road, Lahore-Sheikhupura Road and Motorway-M2.

Lahore Development Authority (LDA), Government of the Punjab, has designated its Metropolitan Planning Wing with the task of preparation of this Master Plan for future 20 years i.e. till year 2035. For this purpose, Environmental Impact Assessment (EIA) study has been prepared in accordance with the TOR’S given and as integral part for land use planning.

1.1. PROJECT DETAIL & BACK GROUND OF PROJECT

Lahore has a very unique and back dating history. The very first structure in this region is the “Baradari of Kamran Mirza” which was built by the brother of Mughal Emperor Humayun in 16th century across the river Ravi. At that time, whole of the sub-continent was controlled by a central government housed in Delhi, which decided to build a fort near River Ravi, called the Lahore Fort. In addition, a walled city was also developed around the fort to house the people who moved here and resided from then on.
As the time passed on, the Walled City of Lahore Fort started growing and spread out of walls of the city, and as we know of it now, is the second largest megalopolis city of Pakistan and is provincial capital for Punjab Province. It had housed 5.143 million people as per 1998 census but its population has grown to some 9 million at present, and Lahore is now considered to be one of the 35 largest cities of the world. Lahore is not only a megalopolis city of Pakistan rather it serves as an economic hub for the whole region. It supports the economy of the region with an annual GDP of $40 billion (as of 2008). The contribution of Lahore to the national economy is supposed to be around 13.2% and Lahore’s GDP is projected to be $102 billion by the year 2025, with a slightly higher growth rate of 5.6% per annum, as compared to Karachi’s 5.5%. In addition to its economic contributions, Lahore also serves as a service hub for whole of the Punjab. It possesses the finest health facilities, educational institutions, commercial centers, employment opportunities, industrial areas, etc. in the whole province and enjoys the privilege of being the supreme city in the whole region.

Despite the fact that Lahore owns innumerous pull factors to attract people from all over the country, it yet suffers lack of proper planning for sustainable future. An overview of the current development situation draws attention of every citizen to ponder upon where the city is going to be. Lahore Division is located at heart of Punjab province covering an area of about 14,687sq.km and serves as a service hub for whole province but the development in this region, has taken an unforeseen and unanticipated direction which is leading to exploitation of resources, and residents are suffering from lack of basic services in some areas, which a metropolitan city and neighboring units must have.

Before year 1975, Lahore Improvement Trust (LIT) was working for betterment of the city which was later on reformed as Lahore Development Authority (LDA) under the Lahore Development Authority Act, 1975. Both the LIT and the LDA were & are entrusted with the task to prepare and implement a Master Plan for the area under jurisdiction, and lead the region towards sustainable development. In 1966, the first master plan for Lahore was prepared which was named as “Master Plan for Greater Lahore, 1961” which guided the development of Lahore until 1980 when the second plan called the “Lahore Urban Development & Traffic Study, 1980” was prepared and acted as a structure plan for Lahore for more than 10 years. Subsequently, other
plans including the “Transportation Study of Lahore, 1991”, “Integrated Master Plan for Lahore, 2004”, and “Lahore Urban Transport Master Plan, 2012”. In addition, multiple Outline Development Plans (ODPs) were also prepared which were & are supposed to guide the development of smaller urban settlements in the Lahore Division.

Out of the aforementioned master/ development plans, Integrated Master Plan for Lahore (IMPL)-2021 and Lahore Urban Transport Master Plan, 2012, along with some of the ODPs are still in force which are being used to achieve the targeted future for Lahore Division. A glimpse over the current development situation of the region shows that, to some extent, the currently inforce plans have however, failed to cope up with the development needs of the region. Moreover, the enforcement agencies had also not been able to implement the said plans, and Lahore has now taken an unforeseen geographical shape. Lahore was expected to grow towards the southern direction (between Multan Road and Ferozpur Road) uptill Raiwind, and the area beyond Ferozpur Road in the east was declared as Agriculture Area, and development was prohibited in this direction. However, in contradiction to the anticipation of these plans, more urban growth has been observed in the eastern direction across Ferozpur Road (in frozen/ prohibited area) during recent years.

Furthermore, it is also worth mentioning that Lahore’s development is also restricted by River Ravi in north & west and BRB Canal in the east, which clearly suggests that Lahore cannot grow beyond these limits until & unless such necessary measures are taken to project development beyond these barriers. Moreover, due to the pull factors of Lahore city, smaller urban settlements in surrounding areas are not finding enough room for development as sustainable urban areas.

In light of the above referred grim situation, the Lahore Development Authority (LDA) has decided to prepare an amendment in master plan for the whole Lahore Division instead of just the Metropolitan Area. This plan is supposed to guide the future development of all the urban area falling under the Lahore Division for future 20 years i.e. till year 2035 and objectives of this Master Plan are;

- Future Development – To Guide the development of Lahore Region (Lahore Division) for future 20 years
• Integration – All parts of the region to be integrated by making them self-sufficient in future development

• Quality Living – To provide the residents with adequate quality of life and hygienic environment

• Sustainability – To ensure resource optimization and preserve options for future generations along with developments

1.2. **NEED FOR THE ENVIRONMENTAL ASSESSMENT**

The preparation and submission of an Environmental Impact Assessment (EIA) report for any development project is a statutory obligation under Punjab Environmental Protection Act, 1997 (PEPA, 1997) amended in 2012 in terms of Section 12 of the Act which states as under:

No proponent of a project shall commence construction or operation unless he has filed with the Provincial Agency, an initial environmental examination or where the project is likely to cause an adverse environmental effect, an environmental impact assessment, and has obtained from the Provincial Agency approval in respect thereof.

The current Project falls under Schedule- II section H of subsection 1 (Land use studies and urban plans-large cities) of IEE/EIA Regulation as per section 12 of Environmental Protection Act and thus requires Environmental Impact Assessment-EIA.

The Environmental Impact Assessment has been prepared during entire master planning stage in order to obtain Environmental Approval/NOC from Environmental Protection Agency EPA-Punjab. In accordance with the Punjab Environmental Protection Act, distinct Environmental Impact Assessment and subsequent NOC approval will be required for owners during construction stage of each of the project such as roads, housings and industries etc. in accordance with the master plan.

It is worth mentioning here that for such master planning projects, the international practices for conducting environmental assessments suggest that a Strategic Environmental Assessment (SEA) Study should be carried out for the Amendment in the Master Plan for Lahore Division. For this purpose, the Framework/ Guidelines for
preparation of a Strategic Environmental Assessment (SEA) for this project have been laid out at Appendix-IV.

1.3. PURPOSE OF THE STUDY

The purpose of the EIA study is to identify the possible beneficial and adverse environmental impacts during the project planning and implementation as presently envisaged and propose the applicable mitigation measures to be implemented in order to minimize the negative impacts and preparation of Environmental Management Plan (EMP).

This EIA report has been prepared keeping in view the following regulations and guidelines:

- Pakistan Environmental Protection Act (PEPA), 1997.
- Pakistan Environmental Protection Agency Regulations, 2000 for review of IEE and EIA.

1.4. OBJECTIVES OF EIA STUDY

The EIA document is intended to provide the decision-makers and all stakeholders with an understanding of the impacts during implementation of Lahore division master plan. The assessment includes suggested efforts to avoid or minimize the adverse effects and methods to enhance the positive effects.

The objectives of the EIA study are as follows:

- Investigate and record the existing social, economic, and environmental conditions that correspond to the proposed location of the project prior to the implementation.
- Describe the different aspects of the proposed project including the ground water aquifer assessment, storm water drainage, flood prone areas, wastewater collection and treatment, solid waste management, power supply, access and internal road network.
- Define and assess the potential beneficial and adverse impacts resulting from the project.
Propose mitigation measures in order to minimize the adverse effects and enhance the beneficial effects.

Prepare an Environmental Management and Monitoring Plan (EMMP) for the project.

1.5. APPROACH ADOPTED TO CONDUCT THE STUDY

Following approach and methodology has been adopted for conducting the EIA studies:

1.5.1. Review of Available Data

A detailed review of the following available documents of the project was conducted:

- TOR’S.
- Detail Maps of the Project Sites
- Integrated Master Plan Lahore 2021
- Outline Development Plans
- Site Details
- Existing Situation and Proposed Plans

The basic objective of the review was to fully understand the Project and the extent of the developmental activities. The review of studies helped to assess the nature and extent of the impacts related to the planning and implementation of the proposed project activities.

1.5.2. Delineation of Area of Project Influence or Study Area

Before proceeding to the environmental analysis of the project, it is imperative to delineate the area of project influence. The project planning as well as implementation may have a variety of direct and indirect impacts on the physical, ecological and human resources of the Project Area and its surroundings. Even the direct impacts may be of primary or secondary nature. Strictly speaking, the primary impacts are directly related to the circumstances where land is to be acquired and the people are affected in so far as their physical displacement or relocation is involved. Likewise, removal of vegetation cover during implementation of the project...
may also be considered as a primary impact. On the other hand, secondary impacts entail the direct impacts on physical, ecological and human resources arising from the pollution caused by noise, vibrations, toxic emissions, spill overs, fugitive dust, or consumption of natural resources, etc. As Lahore division is not planned, therefore, the environmental impacts due to the land use conflicts are also significant. This aspect has also been kept in mind while delineating the study area. The whole Study Area Map in figure 1.1 for reference.

1.5.3. **Environmental Baseline Survey of the Project**

Prior to the start of the baseline environmental survey, a checklist was developed. The major items, which were considered for physical, ecological and social environment, are discussed in the subsequent paragraphs.

1.5.3.1. **PHYSICAL ENVIRONMENT**

For collecting information on the physical environment, the following main parameters were considered:

a. Land Resources (that includes land use, soil composition, topography, geology, contamination of soil and soil erosion, etc.)

b. Water Resources (that includes sub-surface and surface water and ground water etc)

c. Climate (including temperature, rainfall, humidity, wind direction, etc.), Ambient Air and Noise Quality

d. Existing solid waste and waste water management and effluents disposal practices and storm water drainage

e. Other infrastructure (public and private)

To record the baseline conditions of the ambient air quality, noise levels, ground water, stack emissions from industries and sewage water, Environmental monitoring at different sites in the project area was carried out form EPA certified Third party Environmental Laboratory. The map of Environmental Monitoring showing sampling points at different locations of the proposed master plan is attached as Annex- I
1.5.3.2. ECOLOGICAL ENVIRONMENT
Under the ecological environment, the following main parameters were covered:

a. Flora (including vegetation cover of Project Area, trees, shrubs and grasses, and their loss due to implementation of the project, etc.)

b. Fauna (including wildlife, avifauna, domestic animals, etc.)

c. Reserved Forests and Wildlife Sanctuaries in Project Area or its vicinity

d. Migratory birds (if any)

e. Endangered Species (both flora and fauna)

1.5.3.3. SOCIAL AND CULTURAL ENVIRONMENT
To assess the social and cultural baseline settings of the Study Area, social survey was carried out to accomplish the following specific objectives:

a. To establish the socio-economic conditions.

b. To identify the potential disruption of private infrastructure (if any)

c. To identify poor and vulnerable groups and strategies to ensure that such groups should get benefit from the Project.

d. To ensure adequate public/stakeholder consultations and their participation.

e. To identify the effects on available common resources of the community due to the implementation of the Project.

1.5.4. PUBLIC AND STAKEHOLDERS CONSULTATION
In addition to recording the baseline conditions of the Project Area and awareness about the project, public and stakeholders consultations were also carried out including potential Project Affected Persons (PAPs); general population residing in the Project Area; World Wild Life Fund (WWF), Environmental Protection Department, Punjab, International Union for Conservation of Nature, Lahore Conservation Society, Civil Society, Lahore Waste Management Company, Water and Sanitation Agency (WASA) and Local NGOS etc.
1.5.5. Analysis of Data

After collection of the physical, ecological and social environmental and social data from both primary and secondary sources; a critical analysis was made to assess the existing baseline conditions and potential impacts.

1.5.6. Screening of Potential Environmental Impacts and Mitigation Measures

After thorough review of the field notes, collected data, extent of the proposed project activities and detailed discussions with the stakeholders, the potential impacts during planning and implementation stage of Project were assessed. Further measures were proposed to mitigate the negative impacts and to enhance the positive impacts. The potential impacts and mitigation measures were assessed covering the following parameters:

- Environmental problems due to the Project location (i.e. location of different components of the Project)
- Environmental problems related to design
- Environmental problems associated with the construction stage
- Environmental problems resulting from Project operation stage

1.5.7. Preparation of Environmental Management Plan (EMP)

An EMP depicting the mitigation measures and monitoring plan has also been developed. Institutional capacity building of the Client has also been reviewed and enhancement was proposed for the effective implementation of the EMP.

1.6. STRUCTURE OF THE REPORT

This document is structured as follow:

Chapter 1 provides an introduction to the report and project; Chapter 2 describes the legislative and policy framework governing the project; Chapter 3 provides an overall description of the project; Chapter 4 gives analyses of the various alternatives considered; Chapter 5 provides general environmental and social baseline conditions of the project, Chapter 6 assesses the overall environmental impacts of the project and recommends appropriate mitigation measures, Chapter 7 provides
an EMP, DMP and institutional arrangements Chapter 8 presents the concerns of major stakeholders, Chapter 9 presents conclusions and recommendations.

Appendix-I contains Ecological Study Appendix II contains Environmental Monitoring conducted by 3rd party Environmental Laboratory, Appendix III is the Short term Hydrological Study

Annexure-I contains map for Landfill sites, Annex II contains biodiversity map, AnnexIII is the map for flood prone areas, Annex IV map for Environmental Monitoring Locations, Annex V Photo log of Project Site, and Annex VI contains Environmental Social Baseline Survey Data Sheet.

1.7. **EIA STUDY TEAM**

A team of experienced professionals drawn from various disciplines and having relevant experience of conducting Environmental and Social assessments participates in the preparation of an Environmental Impact Assessment Report. The study team collaborated during a comprehensive survey of the project site discussions with the proponents and stakeholder’s, collection and analysis of data, conducting surveys and spot analysis and preparation of the report in consultation with specialists. Services of other experts were also availed on need basis and a researcher compiled secondary physical and socio-economic data of the project area. This Environmental Impact Assessment has been prepared by the following core team:

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Name</th>
<th>Position Held</th>
<th>Qualifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aleem Butt</td>
<td>Environmental Team Leader- EIA</td>
<td>M.phil Environmental Sciences (GCU), M.Sc Environmental Sciences (PU), NEBOSH, Lead Auditor</td>
</tr>
<tr>
<td>2</td>
<td>Nauman Asraf</td>
<td>Environmentalist</td>
<td>BS Environmental Sciences, M.phil Environmental Sciences</td>
</tr>
<tr>
<td>3</td>
<td>Dr. Faiza Sharif</td>
<td>Senior Ecologist</td>
<td>Phd (Conservation Biology) GC University Lahore</td>
</tr>
<tr>
<td>4</td>
<td>Dr. Saleem</td>
<td>Hydrology/ Hydraulic Specialist</td>
<td>Phd (Water Resources Engineering)</td>
</tr>
<tr>
<td>5</td>
<td>Mr. Umar Hayar</td>
<td>EIA Specialist</td>
<td>M. Phil. Environmental Science (GCU Lahore).</td>
</tr>
<tr>
<td>Sr. No.</td>
<td>Name</td>
<td>Position Held</td>
<td>Qualifications</td>
</tr>
<tr>
<td>--------</td>
<td>--------------------------</td>
<td>-------------------</td>
<td>---</td>
</tr>
<tr>
<td>6</td>
<td>Mr. Rashid Mahmood</td>
<td>Botanist</td>
<td>M. Phil. Botany (GCU Lahore), PhD Scholar Environmental Science (GCU Lahore)</td>
</tr>
<tr>
<td>7</td>
<td>Ms. Sumbal Nazir</td>
<td>Zoologist</td>
<td>M. Phil. Zoology (GCU Lahore), PhD Scholar Environmental Science (GCU Lahore)</td>
</tr>
<tr>
<td>8</td>
<td>Muhammad Asif</td>
<td>Development Scientist</td>
<td>M.Sc Development Sciences PU Lahore</td>
</tr>
<tr>
<td>9</td>
<td>Muhammad Habib Ahmad</td>
<td>Social Scientist</td>
<td>M.Sc Sociology PU</td>
</tr>
<tr>
<td>10</td>
<td>Moaz Shakoor</td>
<td>Assistant Environment</td>
<td>(BBA Hons) University of Lahore</td>
</tr>
</tbody>
</table>
CHAPTER 2

POLICY, LEGAL, AND ADMINISTRATIVE FRAMEWORK

2.1. GENERAL

This Chapter provides an overview of the official policy framework and legislation that apply for controlling the environmental consequences of the Project implementation and operation. The Project is expected to comply with all the legislation related to the environmental aspects in vogue in Pakistan.

2.2. NATIONAL POLICY FRAMEWORK

Following elements of national policy framework are the most relevant to this project:

2.2.1. Pakistan Environment Protection Act, 1997

The PEPA provides for the protection, conservation, rehabilitation and improvement of the environment, for prevention and control of pollution, and for the promotion of sustainable development. It expanded on the environmental matters covered in the earlier Pakistan Environment Protection Ordinance, 1983.

The PEPA envisages a Pakistan Environment Protection Council (PEPC) to be the supreme policy-making body, supported by the Pakistan Environment Protection Agency (“Pak-EPA”) and Provincial Environment Protection Agencies (“Provincial EPAs”). The PEPC is mandated to approve national environmental policies within the framework of a national conservation strategy as may be approved by the Federal Government from time to time. The Pak-EPA and Provincial EPAs are established to enforce National Environmental Quality Standards (“NEQS”) approved by the PEPC as well as empowered to carry out their functions under the Act. Provincial Sustainable Development Funds have been established to provide financial assistance to suitable projects. Discharges or emissions in excess of the NEQS established by the PEPC or other standards established by the PEPA have been prohibited. The Federal Government has been empowered to levy a pollution
charge on persons not complying with the NEQS. A two-stage environmental screening process has been introduced for proposed projects involving the filing of either an Initial Environmental Examination ("IEE") or, for projects likely to cause an adverse environmental effect, a comprehensive Environment Impact Assessment ("EIA").

Import of hazardous waste has been prohibited. Handling of hazardous substances has been prohibited except under license. To ensure compliance with the NEQS, the PEPA and Provincial EPAs have been empowered to direct that motor vehicles shall install such pollution control devices or use such fuels or undergo such maintenance or testing as may be prescribed. The PEPA and Provincial EPAs have been empowered to issue the Environmental Protection Orders to deal with an actual or potential adverse environmental effect in violation of the provisions of the 1997 Act. Environmental Tribunals have been constituted with exclusive jurisdiction to try serious offences under the 1997 Act. Minor offences relating to pollution by motor vehicles, littering and waste disposal and violation of rules and regulations are to be tried by Environmental Magistrates. An aggrieved person can file a complaint with the Environmental Tribunal after giving 30-days notice to the PEPA or the Provincial EPAs concerned.

Section 31 of the 1997 Act enables the Federal Government, by notification in the Official Gazette, to make Rules for carrying out the purposes of the 1997 Act, including Rules for implementing the provisions of international environmental agreements specified in the Schedule of the 1997 Act. The PEPA enables the EPAs to make Regulations, with the approval of the Federal Government, by notification in the Official Gazette, that are consistent with the provisions of the 1997 Act and the Rules made under it (Section 33).

The following Rules and Regulations have been notified to date:

- National Environmental Quality Standards (Self-Monitoring and Reporting by Industries) Rules, 2001: to provide a mechanism for self-monitoring of effluent and pollution discharge by industry;
Chapter 2: POLICY, LEGAL, AND ADMINISTRATIVE FRAMEWORK

- Pollution Charge for Industry (Calculation and Collection) Rules, 2001: for determining and collecting a pollution charge applied, ad volarem, to the pollution level of an industry;

- Environmental Samples Rules, 2001: for the collection of environmental samples for use as evidence before the Environmental Tribunal;

- Hospital Waste Management Rules, 2005: for the handling and disposal of hospital waste;

- Environmental Tribunal Rules, 1999: for the establishment and operation of Environment Tribunals;

- Pakistan Bio-safety Rules, 2005;

- Pakistan Environment Protection Agency (Review of IE and EIA Regulations), 2000: for the procedure to be followed in the review and approval of IEEs and EIAs; and

- Environmental Laboratories Certification Regulations, 2001: for the certification of laboratories where environment samples can be tested.

- It is pointed out that PEPA provides a wide and comprehensive definition to the term “environment” as under:

 “environment” means:

 a. air, water and land;
 b. all layers of the atmosphere;
 c. all organic and inorganic matter and living organisms;
 d. the ecosystem and ecological relationships;
 e. buildings, structure, roads, facilities and works;
 f. all social and economic conditions affecting community life; and
 g. the inter-relationship between any of the factors specified in sub-clauses (a) to (f)
It will be appreciated that the definition of “environment” includes, specifically, buildings and social conditions.

2.2.2. Punjab Environment Protection (Amendment) Act, 2012

After the 18th Amendment, the responsibility to legislate on environment and ecological matters became the sole domain of the Provincial Governments. Statutes, however, remain in force until repealed or struck down. The Government of Punjab, therefore, sought to “provincialize” the PEPA by amending its provisions to reflect the decentralization. Thus, wherever the PEPA makes reference to the Federal Government (as in the powers of the Federal Government to pass an order or make an appointment), the reference was amended to read the Provincial Government. In addition, the amount of some fines was increased. In all other respects, the Punjab Environment Protection (Amendment) Act, 2012 is identical to PEPA and the framework of regulation it creates. The Pakistan Environment Protection Council is now the Punjab Environment Protection Council and when it approves standards, these will be known as Punjab Environment Quality Standards to replace the NEQs. A Punjab Environmental Protection Tribunal has been established in Lahore that hears complaints filed by the EPA, Punjab or individuals and appeals against orders of the EPA, Punjab. Appeals against final orders of the Tribunal may be appealed before the Lahore High Court.

The Amendment Act gives the Provincial Government the power to make rules and to authorize the making of regulations under PEPA. In copying the federal PEPA of 1997, the Amendment Act conferred onto the Government of Punjab additional power to regulate by rules the international environmental agreements listed in the Schedule to PEPA.

Under the amended PEPA, the following subsidiary legislation is in effect and of relevant for the purposes of this report:

2.2.2.1. Pakistan Environment Protection (Review of IEE and EIA) Regulations, 2000

Under Section 12 of PEPA, all projects must obtain approval of their Initial Environment Examinations (IEE) or, where the project is likely to cause an adverse environment effect, approval of their Environment Impact Assessment (EIA).
Chapter 2: POLICY, LEGAL, AND ADMINISTRATIVE FRAMEWORK

EIA approval process includes a statutory public hearing of comments on the EIA. Contravention of Section 12 of PEPA is an offence. Under Section 12, the Federal Government may make rules for the regulation of the IEE and EIA approval process. The Pakistan Environment Protection Agency (Review of IEE and EIA) Regulations, 2000 (the “IEE/EIA Regulations”) provides such regulatory framework.

Under the IEE/EIA Rules, all projects listed in Schedule II thereto must submit an EIA for approval to the relevant EPA. With respect to the components of Master Plan of Lahore Division, The Project fall in Schedule II, Subsection ‘H’ as listed below:

H. Urban development and tourism

1. Land use studies and urban plans (large cities)
2. Large-scale tourism development projects with total cost more than Rs.50 million

It may be noted that the PEPA gives definition to “adverse environment effect” as meaning impairment of, or damage to, the environment and includes (a) impairment of, or damage to, human health and safety or to biodiversity or property; (b) pollution; and (c) any adverse environment effect as may be specified in regulations. The master plan project comes in Land use studies and urban plans large city thus require an EIA. Other components of the Project such as construction of roads, buildings, industries, electric transmission, grids and sewage treatment required separate EIA and approval from the provincial department i.e. Punjab EPA

The EPA has the authority to issue guidelines of general applicability and sectoral guidelines for construction and operation of the project, following which an EIA or the IEE must be filed in compliance with the guidelines as far as possible. The EPA will inform the proponent of the status of the assessment or examination within ten days of its filing “complete in all respects”, will further make an effort to complete the review within 45 days of the completed submission of an IEE and within 90 days of a completed submission of an EIA. Review of the EIA must be done with public participation. Following the approval or conditions imposed on the commencement of the Project, the proponent must submit confirmation of compliance with the
measures and procedures mentioned within the decision of the examination or assessment. The approval is deemed to valid through a period of three years.

The EPA may establish an Environment Assessment Advisory Committee to give advice on all aspects of environmental assessments, guidelines and categorization of Projects.

2.2.2.2. Policy and procedure for the filing, review and approval of environment assessments

Part of a package of guidelines notified along with PEPA in 1997, this document sets out the key policy and procedural requirements for environmental approval. It contains a brief policy statement on the purpose of environmental assessment and the goal of sustainable development, requires that environmental assessments be integrated with feasibility studies, defines the jurisdiction of Federal and Provincial EPAs and Planning & Development Departments, lists of the responsibilities of proponents, and lists the duties of Responsible Authorities. It provides schedules of proposals that require either an IEE or an EIA.

2.2.2.3. Guidelines for the Preparation and Review of Environmental Reports, 1997

These Guidelines are a part of the PEPA and the Regulations and are confined to general aspect of environment report preparation. They provide comprehensive instructions on commencing an environment assessment, assessing impacts (identification, analysis and prediction, baseline data, significance), mitigation and impact management (and preparing environment management plan), reporting, review and decision making (role, steps, remedial options, checks and balances), monitoring and auditing (systematic follow up, purpose, effective data management) and project management (inter-disciplinary teams, programming and budgeting).

Guidelines stipulate that the IEE should be undertaken at the pre-feasibility or, at the latest, at the beginning of the feasibility stage; and that the EIA must be conducted during the feasibility stage and all the environmental work must be made available to all those who are undertaking financial, economic and technical studies. The jurisdiction of the Federal EPA is exercised over projects on federal land, military projects, projects involving trans country impacts and in projects involving trans
province impacts where there is a prior agreement for federal jurisdiction or where parties cannot reach a decision for the same.

The review of procedures, guidelines and categorizations is an ongoing process and the Guidelines prescribe that the Director General of the EPA appoint an Environmental Assessment Advisory Committee that will provide guidance in the development of all aspects of the environment assessment.

An integral part of the environment assessment is conformity with the conditions set in the environmental approval and the NEQS.

It is the responsibility of the proponents to use the environmental assessment to explore alternative actions that may minimize the adverse environmental effects and calculate the long and short-term implications of the proposed actions. As early as possible within a project cycle, the proponents in consultation with other agencies should assess in detail the possible environmental impact on the project. The proponents must not undertake any construction prior to the EIA or IEE, and it is in their own best interests to consult the Responsible Agency on all cases as soon as it is possible. The proponents must follow the guidelines for preparation of review of environmental reports 1997. It is furthermore the responsibility of the proponents to obtain any information necessary for the preparation of the EIA/ IEE, assess in detail the environmental impacts and consult and take into account comments by agencies, community and the NGOs.

2.2.2.4. Guidelines for Public Consultation, 1997
These Guidelines, part of a package notified along with PEPA, covers consultation, involvement and participation in the statutory public hearings of EIA required under PEPA. It helps identify stakeholders and provides techniques for public consultation (principles, levels of involvement, tools, building trust), consensus buildings and dispute resolution and in facilitation involvement (including the poor, women, building communities and NGO capacity).

2.2.2.5. Guidelines for Sensitive and Critical Areas, 1997
The Guidelines identify officially notified protected areas in Pakistan, including critical ecosystems, archaeological sites, etc., and present checklists for environmental assessment procedures to be carried out within or near to such sites.
Environmentally sensitive areas include, among others, archaeological sites, biosphere reserves and natural parks, and wildlife sanctuaries and preserves. It is pointed out these Guidelines were prepared before the 18th Amendment but continue in force until amended or repealed. Thus the discussion below includes offices such as the Federal Director General Archeology, which no longer exists. In such circumstances, the word “Federal” may be replaced by “Provincial” as the context requires.

2.2.2.6. Sectoral Guidelines for Environmental Reports

Several guidelines, all notified as part of a package along with PEPA, include guidelines for i) major thermal power stations, ii) major chemical and manufacturing plants, iii) industrial estates, iv) major roads, v) sewerage and vi) oil and gas exploration. These guidelines have been drafted following a format which specifies guidance and requirements on i) a sector overview of the industry and processes; ii) potential impacts on the environment; iii) mitigation measures; iv) monitoring and reporting; v) management and training; and vi) a checklist of likely environmental impacts and mitigation measures.

2.2.3. National Conservation Strategy

The Pakistan National Conservation Strategy (NCS), which was approved by the federal cabinet in March 1992, is the principal policy document on environmental issues in the country (IUCN, 1992).

The NCS outlines the country’s primary approach towards encouraging sustainable development, conserving natural resources, and improving efficiency in the use and management of resources. The NCS has 68 specific programs in 14 core areas in which policy intervention is considered crucial for the preservation of Pakistan’s natural and physical environment. The core areas that are relevant in the context of the proposed project are pollution prevention and abatement, restoration of rangelands, increasing energy efficiency, conserving biodiversity, supporting forestry and plantations, and the preservation of the cultural heritage.
2.2.4. National Environment Policy 2005

The national environmental policy 2005 aims to protect conserve and restore Pakistan’s environment in order to improve quality of the life of citizens through sustainable development. The main objectives of the policy are:

- Conservation, restoration and efficient management of the environmental resources.
- Integration of the environmental considerations in policy making and planning process.
- Capacity building of government agencies and other stakeholders at all levels for the better environmental management.
- Meeting international obligations effectively in line with the national aspirations.
- Creation of a demand for environment through mass awareness and community mobilization.

2.2.5. The National Forest Policy 2001 of Pakistan

This policy covers the Renewable Natural Resources (RNR) of Pakistan i.e. Forests, Watersheds, Rangelands, Wildlife, Biodiversity and their habitats. The policy seeks to launch a process for eliminating the fundamental causes of the depletion of RNR through the active participation of all the concerned agencies and stakeholders, to realize the sustainable development of the resources. It is an umbrella policy providing guidelines to the Federal Government, Provincial Governments and territories for the management of their RNR. In consonance with it, the Provincial and District Governments may devise their own policies in accordance with their circumstances.

The goal of this policy is to foster the sustainable development of RNR of Pakistan, for the maintenance and rehabilitation of its environment and the enhancement of the sustainable livelihoods of its rural masses especially women, children and other deprived groups.

The elements of the policy shall be as follows:
Chapter 2: POLICY, LEGAL, AND ADMINISTRATIVE FRAMEWORK

- Reducing the impact of socio-economic causes.
- Population planning in critical eco-systems.
- Providing substitutes to firewood in the wooded mountains.
- Reducing poverty, poverty of opportunity, and powerlessness.
- Reducing political interference in the Forestry and Wildlife Departments.
- Renovating and invigorating the institutions of RNR.
- Supporting Local Governments in the sustainable development of their RNR.
- Policies for fragile Eco-systems.
- Riverain forests.
- Irrigated Plantations.
- Preservation of relict and unique forests.
- Wildlife.
- Rangelands and desert eco-systems.
- Planting of trees and fodders on farmlands.

2.2.6. PAKISTAN ENVIRONMENTAL IMPACT ASSESSMENT PROCEDURES

These guidelines are descriptive documents describing the format and content of IEE/EIA reports to be submitted to Federal and Provincial EPA/EPD for obtaining NOC. Following are the major areas, which are covered by these guidelines:

- The Environmental Assessment report formation (scoping, type and category of project, description of project, alternatives, site selection, baseline data).
- Assessing impacts (identification, analysis and significance).
Chapter 2: POLICY, LEGAL, AND ADMINISTRATIVE FRAMEWORK

- Mitigation and impact management and preparing an environmental management plan.
- Reporting (format, main features, shortcomings, other forms of presentation).
- Review and decision making (role, steps, remedial options, checks and balances).
- Monitoring and auditing (systematic follow up, effective data management).
- Project Management (inter-disciplinary teams, programming and budgeting).

2.2.7. NATIONAL ENVIRONMENTAL QUALITY STANDARDS (NEQS), 2000

The NEQS 2000 specify the following standards:

- Maximum allowable concentration of pollutants (32 parameters) in municipal and liquid industrial effluents discharged to inland waters, sewage treatment facilities, and the sea (three separate sets of numbers)
- Maximum allowable concentration of pollutants (16 parameters) in gaseous emissions from industrial sources
- Maximum allowable concentration of pollutants (03 parameters) in gaseous emissions from vehicle exhaust.
- Maximum allowable concentration of pollutants (08 parameters) in ambient air.
- Maximum allowable noise levels for different zones.

These standards apply to the gaseous emissions and liquid effluents discharged by industrial plants, batching plants, campsites and construction machinery. The standards for vehicles will apply during the construction as well as operation phase of the project. Standards for ambient air quality have been prescribed to preserve clean air.
2.2.8. National Climate Change Policy, 2012

The National Climate Change Policy (NCCP) was adopted in 2012 and is the country’s first climate change policy. The main climate-related threats recognized by the NCCP are:

a. Considerable increase in frequency and intensity of extreme weather events, coupled with erratic monsoon rains causing frequent and intense floods and droughts;

b. Projected recession of Hindu Kush-Karakoram-Himalayan (HKH) glaciers due to global warming and carbon soot deposits from trans-boundary pollution sources, threatening water inflows into Indus River System;

c. Increased siltation of major dams caused by more frequent and intense floods;

d. Increased temperature resulting in enhanced heat- and water-stressed conditions, particularly in arid and semi-arid regions, leading to reduced agricultural productivity;

e. Further decrease in already scanty forest cover from too rapid change in climactic conditions to allow natural migration of adversely affected plant species;

f. Increased intrusion of saline water in the Indus Delta, adversely affecting coastal agriculture, mangroves and breeding grounds of fish;

g. Threat to coastal areas due to projected sea level rise and increased cyclonic activity due to higher sea surface temperatures;

h. Increased stress between upper riparian and lower riparian regions on sharing the water resources;

i. Increased health risks and climate change induced migration.

The goal of the NCCP is to ensure that climate change is mainstreamed in the economically important and vulnerable sectors of the economy and to steer Pakistan towards low-carbon growth. With regards adaptation, the NCCP sets out policy measures for water resources, agriculture and livestock, human health, forestry and
biodiversity, mountain areas, rangelands and pastures, arid areas, coastal and marine ecosystems. With regards mitigation, the NCCP sets out policy measures with regards energy, transport, agriculture and livestock, carbon sequestration and forestry. It also proposes cross-sectoral policy measures for poverty, gender, town planning and provides for capacity building and institutional strengthening.

As a follow-up to the National Climate Change Policy, 2012 the Climate Change Division of the Government of Pakistan issued the Climate Change Implementation Framework in November 2013. Under the Federal Government Rules of Business, 2012, the Climate Change Division of the Government of Pakistan is responsible for, inter alia, “National policy, plans strategies and programs with regard to disaster management, including environmental protection, preservation, pollution, ecology, forestry, wildlife, biodiversity, climate change and desertification.” The Framework is within the ambit of responsibilities of the Ministry of Climate Change and should guide provincial and local state institutions in their actions.

The Framework was developed keeping in view the current and future anticipated climate change threats to Pakistan various sectors. Accordingly, it sets out a framework implementation schedule for adaptation and mitigation actions in, inter alia, the water, forestry, disaster preparedness, vulnerable ecosystems and urban planning sectors. The Framework prescribes specific actions within each sector that match the requirement of stated objectives.

The Project Proponent should review the Framework to incorporate its stipulated actions into the plans and proposals for the Lahore Division Master Plan Project.

2.2.9. Punjab Wildlife Protection, Preservation, Conservation and Management Act, 1974

Under the Punjab Wildlife Act, wild animal means any wild bird or animals specified in the First, Second, Third or Fourth Schedule to the Act; game animal means any wild animal specified in the First and Fourth Schedule to the Act; protected animal means a wild animal specified in the Third Schedule to the Act; and unprotected animals are those wild birds or animals specified in the Fourth Schedule to the Act.
The Government of Punjab may add or exclude wild animals from the Schedules to the Act. No person may hunt a protected animal and hunting of game animals is permitted under a permit issued under the Act. Snares and the use of hawks and dogs etc. for coursing game animals is prohibited. Killing of any wild animals in defense of life, prevention of damage to livestock is not an offence. Animals killed or found dead, dying or caught otherwise than in accordance with the provisions of the Act are presumed to be the property of the Government of Punjab. No person may be in possession of a wild animal unless in possession of a certificate of lawful possession issued by an authorized officer. No person may transfer to another any animal specified in the Second Schedule without a valid certificate of lawful possession. No person may export or import any wild animal or exotic species or any trophy or meat specified in the Second Schedule without a permit issued under the Act. No person may deal with wild animals or meat or trophies thereof unless in possession of a valid license issued by an authorized officer. The Government may declare any area to be a wildlife sanctuary, wildlife breeding farm, national park, game reserve, Wildlife Park, zoological garden or zoo and safari park and private game reserves, wildlife parks and safari parks. No person may hunt a wild animal within a distance of one mile of a wildlife sanctuary. Hunting, trapping or killing wild animals is prohibited in wildlife breeding farms, as is the act of teasing a wild animal. Hunting is prohibited in a national park. The Government of Punjab may grant permits for the hunting of specified numbers of game animals in a game reserve. The hunting, trapping or killing of wild animals at a wildlife park, zoological garden or zoo and safari park is prohibited such as is the teasing of wild animals. Contraventions of the Act are punishable with imprisonment or fine or both of a term of up to five years and a sum up to Rs. 30,000/- and contraveners may have their licenses suspended for a period of up to five years.

2.2.10. International Treaties

2.2.10.1. Convention on the Conservation of Migratory Species of Wild Animals (Bonn Convention)

The parties to the Convention acknowledge the importance of conserving migratory species, and the need to pay special attention to species the conservation status of which is unfavorable.
a. To avoid any migratory species becoming endangered, the parties must endeavor:

b. to promote, cooperate in or support research relating to migratory species;

c. to provide immediate protection for migratory species included in Appendix I; and

d. to conclude Agreements covering the conservation and management of migratory species listed in Appendix II.

To protect endangered migratory species, the parties to the Convention will endeavor:

a. to conserve or restore the habitats of endangered species;

b. to prevent, remove, compensate for or minimise the adverse effects of activities or obstacles that impede the migration of the species; and

c. to the extent feasible and appropriate, to prevent, reduce or control factors that are endangering or are likely to further endanger the species.

Range States of migratory species ("range" means areas of land or water that a migratory species inhabits, crosses or overflies on its migration route) must prohibit the taking of animals belonging to species listed in Appendix I, subject to certain exceptions (taking for scientific purposes, or to enhance the propagation or survival of the species). Such exceptions must be precise as to content and limited in space and time, and should not operate to the disadvantage of the species.

The conservation and management of the species listed in Appendix II may require international agreements. Guidelines for agreements:

a. restore or maintain the migratory species concerned;

b. cover the whole of the range of the migratory species concerned;

c. be open to accession by all Range States, whether or not they are parties to the Convention;

d. where feasible, concern several species.
The Bonn Convention was signed in 1979 and entered into force on 1 November 1983.

2.2.10.2. Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES)

The purpose of CITES, as stated in the first paragraph of its preamble, is to protect wild fauna and flora for current and future generations. Wild fauna and flora are described as an irreplaceable part of the natural systems of the earth and as being valuable from aesthetic, scientific, cultural, recreational and economic points of view. CITES establishes international co-operation for the protection of certain species from over-exploitation through international trade. The purpose of adopting the convention was not only to avoid aggravation of an ecological problem, but also to prevent a penalization of countries, in particular the US, with stricter ecological legislation.

CITES classifies plants and animals according to three categories, or appendices, based on how threatened they are. Appendix I lists species that are in danger of extinction. It also prohibits outright the commercial trade of these plants and animals; however, some may be transported internationally in extraordinary situations for scientific or educational reasons.

Appendix II species are those that are not threatened with extinction but that might suffer a serious decline in number if trade is not restricted; their trade is regulated by permit. Appendix III species are protected in at least one country that is a CITES member and that has petitioned others for help in controlling international trade in that species.

Appendix I, about 1200 species, are species that are threatened with extinction and are or may be affected by trade. Commercial trade in wild-caught specimens of these species is illegal (permitted only in exceptional licensed circumstances). Trade of captive-bred animals or cultivated plants of Appendix I species are considered Appendix II specimens, with concomitant requirements (see below and Article VII). The Scientific Authority of the exporting country must make a non-detriment finding, assuring that export of the individuals will not adversely affect the wild population. Any trade in these species requires export and import permits. The Management Authority of the exporting state is expected to check that an import permit has been
secured and that the importing state is able to care for the specimen adequately. Notable animal species listed in Appendix I include the red panda, gorilla, the chimpanzee species, tigers, Asiatic lion, leopards, Jaguar, Cheetah, Asian elephant etc.

Appendix II, about 21,000 species, are species that are not necessarily threatened with extinction, but may become so unless trade in specimens of such species is subject to strict regulation in order to avoid utilization incompatible with the survival of the species in the wild. In addition, Appendix II can include species similar in appearance to species already listed in the Appendices. International trade in specimens of Appendix II species may be authorized by the granting of an export permit or re-export certificate. In practice, many hundreds of thousands of Appendix II animals are traded annually. No import permit is necessary for these species under CITES, although some Parties do require import permits as part of their stricter domestic measures. A non-detriment finding and export permit are required by the exporting Party. Examples of species listed on Appendix II are the great white shark, American black bear etc.

Appendix III, about 170 species, are species that are listed after one member country has asked other CITES Parties for assistance in controlling trade in a species. The species are not necessarily threatened with extinction globally. In all member countries, trade in these species is only permitted with an appropriate export permit and a certificate of origin from the state of the member country who has listed the species. Examples of species listed on Appendix III and the countries that listed them are the two-toed sloth by Costa Rica and Alligator Snapping Turtle by the USA.

In addition to plants and animals and their parts, the Convention also restricts trade in items made from such plants and animals, such as clothing, food, medicine, and souvenirs. By 2009 more than 5,000 animal and 28,000 plant species had been classified.

The CITES was signed on 3 March 1973 and entered into force on 1 July 1975.
2.2.11. Local Government Laws

The Constitution of the Islamic Republic of Pakistan, 1973 is the basic legal document of Pakistan setting out, inter alia, a two-tier federal system consisting of a federal government of Pakistan and provincial governments. Local government is mentioned in Article 32 of the Constitution as a Principle of Policy in the following terms:

Promotion of Local Government Institutions: The State shall encourage Local Government institutions composed of elected representatives of the areas concerned and in such institutions special representation will be given to peasants, workers and women.

Further, Article 37 of the Constitution enshrines another Principle of Policy related to decentralization in the following terms:

Promotion of Social Justice and Eradication of Social Evils: The State shall decentralize the Government Administration so as to facilitate expeditious disposal of its business to meet the convenience and requirements of the public.

The 18th Amendment of 2010 has made a significant change in respect of the powers of local governments to regulate land use in their local areas. Before the 18th Amendment, the Constitution envisaged government only at the Federal and provincial levels. Local governments were obligations imposed on the provinces through the Constitution’s Principles of Policy, a set of Constitutional policy statements that are otherwise not justiciable. As such, the manner and form of local governments was more or less the prerogative of the provincial government legislating on the subject. However, the 18th Amendment changes this position. The newly inserted Article 140-A of the Constitution states:

2.2.11.1. Local Government:

a. Each Province shall, by law, establish a local government system and devolve political, administrative and financial responsibility and authority to the elected representatives of the local governments.

b. Elections to the local governments shall be held by the Election Commission of Pakistan
As such, the local government system has been fully recognized as a third tier of governments by the Constitution. Importantly, this amendment allows for the recognition of a constitutional mandate of an elected local government system. Such a mandate would be protected against encroachment through enforcement of Fundamental Rights through the judiciary. This has not been the case before. In a recent decision of the Lahore High Court, this mandate was judicially recognized and the LDA was restrained from undertaking any further development activity – something the Court held was the mandate of elected local governments – until local governments elections were held and local governments were formed that could evaluate and approve such development activity for themselves.

2.2.11.2. Punjab Local Government Ordinance, 2001

The Punjab Local Government Ordinance, 2001 (“PLGO”) aims to reconstruct and regulate local governments in the Punjab. The PLGO applies to the whole of the province of Punjab except for cantonment areas.

- The PLGO establishes local governments at the sub-provincial level. In urban areas, from the bottom up, these levels are: Union Council, Town and Districts and City Districts.

- In urban areas, land use and building control is practiced by Town Municipal Administrations and by the District or City District Government. Section 54-A of the PLGO gives the Town Municipal Administrations powers to, inter alia:

 - prepare spatial plans for the Town in collaboration with the District Government, including plans for land use, zoning and other functions for which the Town Municipal Administrations are responsible;

 - execute and manage development plans;

 - exercise control over land use, land sub-division, land development and zooming by public and private sectors for any purpose including recreation, parks, entertainment within the spatial and master plan for the City District;
Chapter 2: POLICY, LEGAL, AND ADMINISTRATIVE FRAMEWORK

• provide, manage, operate, maintain and improve the municipal infrastructure and services, including water supply and sewage and sewage treatment and disposal, parks, playgrounds and open spaces etc.

Under Schedule 6 of the PLGO, concerned local government may provide, promote or subsidize facilities for the recreation of the public; lay out and maintain recreational gardens.

2.2.11.3. Punjab Local Government Act, 2013

The Punjab Local Government Act, 2013 aims to rationalize and reorganize the local government system in the Punjab. It applies to the whole of Punjab except cantonment areas and will take effect in such places at such times as the Government of Punjab may notify. Till date, no notification in this regard has been issued.

The Act establishes a Metropolitan Corporation for Lahore and Municipal Corporations and Municipal Committees for such urban areas as the Government of Punjab may notify. The Lahore Metropolitan Corporation and Municipal Committees have broadly similar powers to, inter alia,

• approve spatial plans, master plans, zoning, land use plans including classification and reclassification;

• implement rules and bye-laws governing land use, housing, markets, zoning, environment, roads and public utilities etc.;

• Exercise control over land use, land sub-division, land development and zoning by public or private sectors for any purpose, including for recreation, parks and entertainment etc.;

• water supply and control and development of water resources;

• sewage and sewage treatment and disposal;

• development and maintain museums, art galleries, libraries, community and cultural centers; and

• conserve historical and cultural assets
2.2.11.4. Lahore Development Authority Act, 1975

The Lahore Development Authority Act, 1975 aims to provide for the constitution of the LDA in order to provide a comprehensive system of metropolitan planning and development in order to improve the quality of life in Lahore, establish an integrated metropolitan and regional development approach and a continuing process of planning and development, to ensure optimum utilization of resources etc.

The Act establishes the LDA and grants it wide powers to carry out planning and development within the Lahore Division. The LDA is to prepare schemes for, inter alia, recreation facilities and preservation of objects or places of historical importance and execute the same after approval from the Government of Punjab.

The scope of the Act and, by extension, the jurisdiction of the LDA has been increased by the LDA Amendment Act, 2012. Whereas previously the LDA exercised jurisdiction within its “controlled area”, it now exercises control within the entire Lahore Division.

The LDA Amendment Act also permits the LDA to enter into agreements with persons for the purposes of preparing, establishing and developing housing and other schemes, buildings, infrastructure, services etc. The LDA Amendment Act also specifically allows the LDA to modify schemes prepared under the LDA Act through classification, reclassification or redevelopment.

The LDA Amendment Act also now confers wide powers onto the LDA in regards of control of the master plan of the Lahore Division. The Act now requires the LDA to exercise land use “in the prescribed manner”, namely in accordance with the LDA Master Plan Rules and LDA Land Use Rules.

The amendment to the LDA Act now allows the LDA to acquire land and pay compensation and provides its own statutory method of payment of compensation. This means the LDA may dispense with the use of the Land Acquisition Act, 1894. One of the newly introduced forms of compensation is by way of alternate land and development sites or a combination of both. The Act also now provides for a Tribunal that will hear objections related to the acquisition of land by the LDA. The LDA Amendment Act thus provides an alternate remedy for the redress of grievances in
acquisition cases, which otherwise are a burden on the workload of the civil courts and High Court of Lahore.

2.2.11.5. LDA Land Use Rules, 2014

The LDA Land Use Rules, 2014 are made under powers conferred onto the LDA by the LDA Act, 1975. These Rules repeal the LDA Land Use (Classification, Reclassification and Redevelopment) Rules, 2009, which in substance, scope and nature were similar to the Punjab Land Use (Classification, Reclassification and Redevelopment) Rules, 2009. These Rules can thus be looked upon as an “upgrade” of earlier Rules, albeit only for the purposes of the LDA.

Similar to the Land Use Rules, the LDA Land Use Rules categorize areas within the LDA’s Control Area as residential, commercial, industrial, institutional, mixed-use, peri-urban, special development zone, agricultural and notified area. In addition, the LDA may designate may specific the uses of various parcels of land falling under special development zones. Land use in each land use classification shall either be permitted or permissible and, if not either, prohibited. The Land Use Rules recognize historically significant area if the same have been designated as a historically, architecturally or archeologically significant area. The LDA is to ensure strict compliance with the relevant provision of law regarding historically significant or environmentally sensitive areas.

The Rules provides procedures for the notification of a land use classification map, reclassification and redevelopment. The Rules prescribe a blanket prohibition on the conversion of land use, whether through its own procedures or procedures found in the LDA (Master Plan) Rules, 2014 or the Punjab Land Use (Classification, Reclassification and Redevelopment) Rules, 2009 unless a conversion fee is paid. The Rules set out the rates of the conversion fees. Note that the Rules prescribe a fee for the conversion of agricultural land to industrial, institutional or intercity services.

The Rules also contain provisions for the “temporary commercialization of land or property for a period of up to 10 years. Permission for temporary commercialization may be granted by fulfilling a number of set conditions that include, inter alia, set back, but not Floor-Area Ratios.
Chapter 2: POLICY, LEGAL, AND ADMINISTRATIVE FRAMEWORK

2.2.11.6. **LDA (Master Plan) Rules, 2014**

The Lahore Development Authority (Master Plan) Rules, 2014 are made under powers conferred under the LDA Act. The Rules provide that the LDA shall, from time to time prepare a master plan for the “area”. “Area” has been defined as the Lahore Division “to which the LDA Act applies. The Rules prescribe the process by which the LDA is to formulate master plans. However, till a new master plan is formulated, Rule 13(1) states “Master Plan 2021 Lahore” along with its provisions and amendments shall continue to be in force till the preparation of new master plan by the LDA or any amendment by the LDA. The Rules also provide for a mechanism by which master plans – including, presumably, Master Plan 2021 – may be amended. Such mechanism provides for public consultation before an amendment may be affected.

The Rules follow the land use classifications found in the Lahore Development Authority Land Use Rules, 2014. Property developers are required to seek a No Objection Certificate that their scheme is in compliance with the master plan.

The Rules provide that their provisions shall prevail in the event there is a conflict in respect of permitted and permissible uses in the existing master plan or the Lahore Development Authority Land Use (Classification, Reclassification and Redevelopment) Rules, 2009 and the Rules also repeal the latter. The Rules also exclude the applicability of the Punjab Land Use (Classification, Reclassification and Redevelopment) Rules in the Lahore Division and state no other authority, except the LDA, shall have jurisdiction to deal with the master plan in the Lahore Division.

The effect of the Rules is to recognize Master Plan 2021 as the existing master plan for the Lahore Division and to harmonize the land use rules operating therein. There are only one set of land use rules applicable in Lahore Division at this time: the LDA Land Use Rules.

2.2.11.7. **LDA Building and Zoning Regulations, 2007**

The LDA Building and Zoning Regulations, 2007 were issued in 2008. The LDA Building and Zoning Regulations, 2007 were back-dated from the date they were adopted by the LDA and not the date they were published in the official Gazette.
Chapter 2: POLICY, LEGAL, AND ADMINISTRATIVE FRAMEWORK

These Building and Zoning Regulations comprise of ten chapters. Chapter 1 sets out common definitions as well as the zones these Building and Zoning Regulations apply to. Chapter 1.2 differentiates between Residential Zones, Commercial Zones, Industrial Zones and Special Area Zones. Special Area Zones include the Walled City area or Historically Significant Areas as specified in the approved Master Plan or schemes to be prepared by the LDA; flood plains as defined in the approved Master Plan; and Environmentally Sensitive Areas including natural parks, wild life parks, forests and water shed areas.

The Residential Zone is sub-divided into Approved Schemes, Established Built-Up Areas and Predominantly Open Areas. The Commercial Zone is sub-divided into plots of 6 kanals and above on roads at least eighty feet wide, Central Business District, Main Civic and Commercial Centers, Neighborhood Commercial Areas, Other Commercial Areas, Converted Plots and Predominantly Open Areas. The Industrial Zone is sub-divided into Industrial Estate and Industrial Areas in Approved Schemes, Industrial Zones in Established Built-up Areas and Industrial Zones in Predominantly Open Areas.

Chapters 2, 3 and 4 provide for site requirements in Residential, Commercial and Industrial Zones, respectively, and prescribe mandatory open areas, building height and FAR, amongst other requirements in each of their sub-zones.

Chapter 5 provides for parking requirements and prescribes specifications for parking space standards for various types of land-use. For example, one car space is required for every 12000 square feet of covered area in apartment buildings and hotels must provide one car space for every six rooms. The Chapter also prescribes general provisions such as parking standards, parking requirements, minimum floor heights and maximum ramp angles in parking garages and parking areas.

Chapter 6 prescribes space and safety requirements. Chapter 6.1.4 provides for the sub-division of plots in Approved Housing Schemes and in other areas.

Chapter 7 provides for the structural design of Multi-Storey Buildings and mobile-phone antenna towers.

Chapter 8 provides for builders’ obligations on a building site. Chapter 9 continues to provide the roles and responsibilities of builders, consultants, contractors and DAs.
and the LDA. Chapter 10 outlines the procedure for the sanction of a building plan by a DA or the LDAs.

2.2.11.8. Integrated Master Plan for Lahore (IMPL) - 2021
Master Plan 2021 is properly known as Integrated Master Plan for Lahore – 2021 and was prepared by the National Engineering Services Pakistan (Private) Limited for the LDA and was approved by the Lahore District Council on 6 October 2004.

Vide Rule 13(1) of the LDA Master Plan Rules, the LDA has adopted Master Plan 2021 as the master plan for Lahore which shall continue in force until replaced or amended.

Chapter 9.3.3 of Volume I of the Master Plan notes that Lahore has 59 monuments, including Jehangir’s Tomb, Noor Jehan’s Tomb and Kamran’s Baradari. Chapter 12 lists the Existing Flood Protection Facilities of Lahore, and includes the Shahdara Flood Protection Bund as protecting the site of Jehangir’s Tomb.

Chapter 18.2.7 of Volume II of the Master Plan notes the “Integrated Master Plan should revive the potential of waterside recreation along River Ravi by providing active and passive recreation along river banks. Chapter 19.6.8 lists proposed public facilities including recreation. The Master Plan of Volume II has proposed three parks along the river side to exploit the river’s recreational facilities. Chapter 22.3 of Volume II recreational facilities for Lahore, including three parks along the river side.

Chapter 25 of Volume II of the Master Plan sets out flood management and growth possibilities across River Ravi and prescribes short and long-term plans in order to plan and prepare for floods.

2.2.12. Resettlement Laws

Article 23 of the constitution of Pakistan establishes the right of every citizen to acquire, hold and dispose his/her property in any part of Pakistan. Article 24 of the constitution of Pakistan relating to the Protection of Property Rights is most important, and has direct relevance to the project Affected people. Its first two clauses are;
Chapter 2: POLICY, LEGAL, AND ADMINISTRATIVE FRAMEWORK

1) No person shall be compulsorily deprived of his property save in accordance with law.

2) No property shall be compulsorily acquired or taken possession of save for a public purpose, and save by the authority of law which provides for compensation therefore and either fixes the amount of compensation or specifies the principles on and the manner in which compensation is to be determined and given.

2.2.12.2. Land Acquisition Act, 1894

The Land Acquisition Act 1894 is a "law for the acquisition of land needed for public purposes and for companies and for determining the amount of compensation to be paid on account of such acquisition". The raison d'être of this piece of legislation is, therefore, two-fold: firstly to fulfill the needs of government and companies for land required by them for their projects, and secondly, to determine and pay compensation to those private persons or bodies whose land is so acquired. The exercise of the power of acquisition has been limited to public purposes.

This Act basically governs the acquisition of private properties for public purposes for development projects in Pakistan. It comprises 55 Sections pertaining to: area notifications and surveys; acquisition; compensation and apportionment of awards; dispute resolution; penalties; and exemptions, but neither this nor any other law of the land, covers resettlement and rehabilitation of persons in the manner as a mandatory process according to current perceptions and requirements of the international financing agencies.

Some of the main provisions include:

- Section 4 deals with publication of preliminary notification and power for conducting survey;
- Section 6 requires the Government makes a more formal declaration of intent to acquire land;
- Section 7 necessitates the Land Commissioner to direct the Land Acquisition Collector (LAC) to take order of the acquisition of the land;
Section 8 requires the LAC to then direct the land to be marked out, measured and planned;

The LAC gives notice to all Affected Persons (AP) that the Government intends to take possession of the land and if they have any claims for compensation that should be made to him at an appointed time;

Section 10 delegates power to the LAC to record statements of APs in the land or any part thereof as co-proprietor, sub-proprietor, mortgagee, and tenant or otherwise;

Section 11 enables the Collector to make enquiry into measurements, value and claim and issue the final “award”. Included is the land's marked area and valuation of compensation;

Section 16: When the LAC has made an award under Section 11, he will then take possession and the land shall thereupon vest absolutely in the Government, free from all encumbrances;

In case of dissatisfaction with the award APs may request the LAC to refer the case onward to the court for decision. This does not affect the taking possession of the land;

The award of compensation for the owners for acquired land is determined at its market value plus 15% in view of compulsory nature of the acquisition for public purposes;

Section 28 relates with determining compensation values and interest premium for land acquisition;

Section 31 provides that the LAC can, instead of awarding cash compensation in respect of any land, make any arrangement with a person having an interest in such land, including the grant of other lands in exchange;

Grievance redress is established through the formal land acquisition process at a point in time or through appeals to the court
2.2.13. THE WORLD BANK REGULATIONS

2.2.13.1. Provisions of Bank’s Safeguards Policies

The following World Bank’s Safeguards have been triggered by the Project based on the field investigations related to environment as well as social sectors.

Operational Policy-4.01

Operational Policy 4.01 identifies the general policy of the World Bank about the EIA, lays down the procedures and guidelines for conducting EIA of the projects including the aspects to be considered in EIA, public consultation and information disclosure procedures.

Operational Policy-4.04

Operational Policy 4.04 deals with the conservation of natural habitat. As the project will pass through some forest areas, the project will have to adopt the guidelines of this policy to mitigate the adverse impacts on natural habitat.

Operational Policy-4.11

This policy addresses physical cultural resources, which are defined as movable or immovable objects, sites, structures, groups of structures, and natural features and landscapes that have archaeological, paleontological, historical, architectural, religious, aesthetic, or other cultural significance. Physical cultural resources may be located in urban or rural settings, and may be above or below ground, or under water. Their cultural interest may be at the local, provincial or national level, or within the international community.

The Bank assists countries to avoid or mitigate adverse impacts on physical cultural resources from development projects that it finances. The impacts on physical cultural resources resulting from project activities, including mitigating measures, may not contravene either the borrowers national legislation, or its obligations under relevant international environmental treaties and agreements.

During field survey no cultural/historical/archeological property was identified along the Project Corridor. However, should any such property/chance find/artifact get identified during implementation, the Contractor will stop work, protect the cultural property, contact the relevant government department/ agency responsible and handover the artifact/chance find, etc.
BP-17.50-Disclosure Policy

For meaningful consultations between the borrower and project-affected groups and local NGOs on all Category A and B projects proposed for the World Bank financing, the borrower provides relevant material in a timely manner prior to consultation and in a form and language that are understandable and accessible to the groups being consulted.

For a category A project, the borrower provides for the initial consultation a summary of the proposed project’s objectives, description, and potential impacts; for consultation after the draft EA reports is prepared, the borrower provides a summary of the EA’s conclusions. In addition, for a Category A project, the borrower makes the draft EA report available at a public place accessible to project-affected groups and local NGOs.

In accordance with the Disclosure Policy of the World Bank, the Environmental and Social Assessment (ESA) and Resettlement Plan (RP) will be disclosed at the info shop and the Project sites, viz., Project Offices and Public Libraries. The Executive Summary will be translated into Urdu will also be disclosed at the Project site where it will be accessible to affectees.

2.2.14. OTHER ENVIRONMENT RELATED STATUTES

This section outlines the other statutes apart from Pakistan Environmental Protection Act, 1997, which are relevant to the project.

2.2.14.1. Pakistan Explosives Act, 1884

Under the Explosives Act, the project contractors are bound by regulations on handling, transportation and using explosives during quarrying, blasting, and other purposes.

2.2.14.2. The Forest Act, 1927

The Forest Act empowers provincial governments to prohibit the clearing of forest for cultivation, grazing, hunting, removing forest produce; quarrying and felling, lopping and toping of trees, branches in reserved or protected areas.
2.2.14.3. Pakistan Penal Code, 1860
The Pakistan Penal Code deals with offences where public or private property and/or human lives are affected due to the intentional or accidental misconduct of an individual or body of people. In the context of environment, the Penal Code empowers the local authorities to control noise, noxious emissions and disposal of effluents. The NEQS enforced by the EPAs supersede the application of this legislation on industries and municipalities.

This policy document introduces a proactive and anticipatory approach by laying special emphasis on risk assessment, prevention, mitigation and preparedness, with the aim of creating a resilient nation. The policy aims to reduce socio-economic vulnerabilities to disaster in specific area as well as dealing with the environmental and other hazards that trigger them.
3.1. GENERAL

This Chapter provides an overview of the project location, each site description and proposed amendment components.

3.2. LOCATION OF THE PROJECT

The Project is located in Lahore Division. The project map is given in figure 1-1.

Figure 3.1: Location of Project Area - Lahore Division
3.3. TOTAL AREA & DESIGN POPULATION OF THE PROJECT

The total area of Project that is estimated for master planning is about 348,565 Acres. The master plan is designed up till 2035 with estimated total population growth of project areas up to 6.9 million. The design population for the master plan of Lahore division 2035 is about 6.9 million.

3.4. DESCRIPTION OF PROJECT AREA-LAHORE DIVISION

Lahore Division is an administrative division of Punjab Province, Pakistan and called the third tier of government. Lahore statistical division contains the districts of Lahore, Nankana Sahib, Kasur, and Shekhupura. The area of Lahore Division is about 11413.5 km² with the population of 14 million in accordance with 1998 census. With average growth rate of 3.20, the current population of Lahore division is estimated as 25 million. A projection is that by year 2035 there will be almost 50 million people living in the division. The unplanned expansion of the Lahore division, competing land use and exponential population growth with the rate upto 3.20 had put the burden on existing infrastructure causing multiple problems like land use conflicts, traffic congestion, pollution, environmental degradation, water degradation and social implications. Therefore, master planning is required for the Lahore division in order for structured development with pragmatic approach that can mainstream current industrial and residential development.

The description of the each district of Lahore division is given as under:-

3.4.1. LAHORE

Lahore district is the provincial capital of Punjab province Pakistan that contains two tehsils i.e. Lahore Cantonment and Lahore City. The total area of Lahore is 1,772 square kilometres (684 sq mi). According to the 2013 census, the population was 12.2 million of which 81.17% were urban. In year 2000 the two tehsils of Lahore were replaced with ten subdivisions called towns, which are Allama Iqbal, Aziz Bhatti, Data Ganj Baksh, Gulberg, Nishtar, Lahore Cantonment, Ravi, Samanabad, Shalimar, and Wagah. Lahore is bounded on the north and west by the Sheikhupura
District, on the east by Wagah, and on the south by Kasur District. The Ravi River flows on its northern side. Lahore is the second largest metropolitan area in Pakistan and 14th most populous city in the world. It is an important historical centre in South Asia. With a rich history dating back over a millennium, Lahore is a main cultural centre of the Punjab region and Pakistan and is the largest Punjabi city in the world. One of the most densely populated cities in the world, Lahore remains an economic, political, transportation, entertainment, and educational hub of Pakistan.

3.4.2. **NANKANA SAHIB**

Nankana Sahib is a district in the Punjab province of Pakistan. The district of Nankana Sahib is located about 75 kilometres (47 mi) west of Lahore and about 55 kilometres (34 mi) east of Faisalabad. The current population of Nankana Sahib is around 350,000 (2015 estimated figures) with average growth rate 2.35 %. The district Nankana Sahib has 3 tehsils namely Nankana Sahib, Shah Kot and Sangla Hill. Among these tehsils shahkot is the largest urban center. Nankana Sahib is a town of Gurdwaras (Sikh temples), the most important of these being the 'Nanak's Ayan' called Janam Asthan or Birth place of Nanak. Guru Nanak passed his whole
childhood and young age in Nankana Sahib. Sikhs in all over the world are the followers of Baba Guru Nanak Sahib. Nankhana Sahib is surrounded by 4 districts i.e. Kasur, Shiekhpura, Faisalabad and Lahore. The district is linked with Kasur, Lahore Shiekhpura and Faisalabad from GT road and M2 motor way. The district is also the site for some ambitious development including new facilities for visiting pilgrims, a modern hospital, international hotels, housing and planned international airport.

Figure 3.3: Location Map of District Nankana Sab

3.4.3. KASUR

Kasur is one of the districts in the province of Punjab, Pakistan. It came into existence on 1 July 1976. Earlier it was part of Lahore District. The district is bounded by the Ravi River in the north-west and river Sutlej in the south-east. Whereas the old course of Beas River bifurcates the district into two equal parts locally known as Hither and Uthar or Mithan Majh. Both of the areas have a height differential of approximately 5.5 meters. The natural surface elevation of the district is 198 meters above the sea level, having a general slope from north-east to south-west. Whereas the east and west ends of the district comprise the flood plains of the
rivers Satluj and Ravi, characterized by breaching of looping river Channels braided around meander bars. Kasur district is attached with Lahore from east, attached with Nankana Sahib from north, attached with Faisalabad from west and attached with Okara and India from south. Kasur is connected with road network of ferozpur road from Lahore and Gand Sighwala, Raiwind road from Raiwind and Depalpur road from Depalpur. The Kasur city is adjacent to the border of Ganda Singh Wala. Kasur has four tehsils namely Chunian, Qasu, Kot Radha Kishan and Pattoki. The district capital is Kasur city, the birth city of the Sufi poet Bulleh Shah, well known in that region as well as in the whole of Pakistan. The total area of the district is 4,796 square kilometres with estimated population 1.7 million (2015 estimates) and average growth rate about 2.99%. Kasur is the 20th most populous city of Pakistan. The district is one of the major tourist attractions because of the famous guard changing ceremony on Ganda Singh Wala border. The city is also the resting place of Sufi poet Bulleh Shah. Kasur is famous for its very spicy fish, a sweet dish called Andrassay, Falooda and Kasuri Methi.

Figure 3.4: Location Map of District Kasur
3.4.4. SHIEKHPURA

Sheikhupura District is located about 35 km northwest of Lahore in Pakistan. It is known for its historical places, and is commonly known locally as Qila Sheikhupura, because of the fort in the city, constructed by the Mughal Emperor Jahangir. The name of Sheikhupura is derived from a nickname of Prince Jahangir, who was known as Sheikhu by his father King Akbar. The present city of Sheikhupura was built by Mughal Emperor Jahangir in 1607. The district has 05 tehsils namely Sheikhu Pura, Feroz Wala, Murid Ke, Sharaq Pur and Safdar Abad. Among them Sheikhupura is the capital of Shiekhpura district. The shiekhpura district is the 16th largest city of Pakistan and is bounded by Lahore to the east, Gujranwala to the north, Hafizabad to the west and Nankana Sahib to the south. The area of shiekhpura district is about 5960 km2 with estimated population of 1.3 million. The district is commonly known for its worth-seeing historical places, industrial and agriculture surroundings and one of the best export-quality rice. It also owns Shakespeare of Punjabi poetry, famous sufi poet Waris Shah whose Heer is an imperishable legend of divine love. The best attractive sites for visitors in shiekhpura are Hiran Minar, Fort (Qila Sheikhupura), Company Bagh, Tomb of Shah Jamal, Sacha Sodha, Shrine of Mian Sher Muhammad Sharaqpuri, Shrine of Syed Pir Bahar Shahand Shrine of Syed Waras Ali Shah.
3.5. DESCRIPTION OF SITE PROJECT AREAS IN LAHORE DIVISION

There are total 48 proposed areas selected for the master planning in Lahore Division out of 04 areas falls in Lahore District, 10 areas falls in Nankana District, 16 areas fall in Kasur District and 18 areas fall in Shiekhpura District. The description of each of these existing and proposed project areas with mapping are given as under:-

3.5.1. DISTRICT LAHORE

Four project areas fall in district Lahore detail description of which is given as under:

3.5.1.1. PROJECT AREA (PA)-LHR-1- (FEROZPUR ROAD AND BRB CANAL)

Description of Project Area

In the West, area is bounded by Ferozpur Road starting from Chungi upto Hadyara Drain and extends along with Hadyara Drain upto proposed structure plan road. The boundary along structure plan intersects Defence Road joning Ferozpur Road at Kahna Kacha stop upto village Julkey.
Chapter 2: POLICY, LEGAL, AND ADMINISTRATIVE FRAMEWORK

In South, area is bounded by a proposed structure plan road starting from Ferozepur road near village Julkey upto BRB Canal.

In East, area is bounded by BRB canal starting from near Jahman upto Hadyara Drain.

In North, area is bounded by Hadyara drain starting from BRB canal upto Bedian Road, at North west Bedian Road staring from Hadyara Drain upto Ring Road at Nawaz Sharif Interchange and Ring Road joining Kamahan Road starting from Nawaz Sharif Interchange upto Ferozepur Road.

Figure 3.6: Existing Landuse map for site LHR-1- (FEROZPUR ROAD AND BRB CANAL)

Existing Builtup 5395

Proposed Land use for LHR-1- (FEROZPUR ROAD AND BRB CANAL)
Present trend of development and colonization by DHA is promoting residential growth; therefore, for development in an appropriate form, necessary amendment in land use has been made as following:
Green Area on the eastern side towards BRB Canal has been proposed as residential area.

Certain existing approved, under process schemes have been proposed to be incorporated in Amendment Plan.

The proposed residential area in ODP of Kahna Nau was ignored in the IMPL-2021, which is now incorporated in Amendment Plan.

The calculations are made based on the GIS data which is presented in the table below:

<table>
<thead>
<tr>
<th>Land use</th>
<th>Area in Acres (approx.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>39395</td>
</tr>
<tr>
<td>Residential</td>
<td>34,000</td>
</tr>
<tr>
<td>Built up</td>
<td>5395</td>
</tr>
</tbody>
</table>

Table 3.1: Proposed land uses for LHR-01

Figure 3.7: Proposed land use for LHR-1- (FEROZPUR ROAD AND BRB CANAL)

Proposed Road Network for LHR-1- (FEROZPUR ROAD AND BRB CANAL)
Chapter 3: PROJECT DESCRIPTION

Transportation is a system used to carry people and goods from one place to another in an efficient, safe, and most economical way. Transportation contributes much to the development of economic, social, political and cultural fields and uplifting the economic conditions of the people. In addition to urban transportation system, it is equally important to promote transport system for the proper development in an integrated manner. Without development of transportation neither mass production nor distribution of industrial products is possible.

In case of Lahore, no structure plan roads were proposed in IMPL-2021 for the site under reference. Now the said area is being proposed as residential zone, therefore, certain structure plan roads have also been proposed in this area ranging from 100 feet to 200 feet connecting Lahore Ring Road, Rohi Nala Road, Link Road, Ferozpur Road, Kamahan Road etc. The same may also be ensured during approval of housing schemes.

The proposed land uses and roads have been presented in the map below:

Figure 3.8: Proposed Road Network for LHR-1- (FEROZPUR ROAD AND BRB CANAL)
3.5.1.2. **PROJECT AREA Site-LHR-2 (Raiwind City)**

Description of Project Area

In the North, area bounded by LDA City boundary and 1st proposed structure road (passing from Lake City, Bahria Town Sector-E) upto UBD Canal.

In the East, area bounded by Ferozpur road.

In the South, area bounded by Sua e Asal Road upto Raiwind, then along Southern boundary of Raiwind City, Bhucke Manjha, Butcherkhana Distributary, Rakh Mudke, Talib Sarai village upto Multan Road.

![Figure 3.9: Existing Landuse map for LHR-2 (Raiwind City)](image)

Existing Builtup 1647 acres
Proposed Land use for LHR-2 (Raiwind City)

The total area of the project site is approximately 3173 acre. For this site, IMPL-2021, Outline Development Plan of Raiwind City and relevant planning documents have been examined and it is recommended that areas as proposed in Outline Development Plan of Raiwind (2000-2025) are retained and no change is proposed. However outside ODP planning boundaries, area proposed in IMPL – 2021 as residential, industrial and green zone have been amended as following:

i. Area between Sunder-Raiwind road and Manga-Raiwind road is proposed as Industrial Area.

ii. Area between Manga-Raiwind road and Railway line is proposed as Residential Area.

iii. In south western side, area from Railway line upto the boundary of project area / ODP is also proposed as Residential Area.

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Land use</th>
<th>Area (Acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Total Project Site</td>
<td>3173</td>
</tr>
<tr>
<td>2</td>
<td>Residential</td>
<td>268</td>
</tr>
<tr>
<td>3</td>
<td>Industrial</td>
<td>343</td>
</tr>
<tr>
<td>4</td>
<td>Builtup</td>
<td>1647</td>
</tr>
<tr>
<td>5</td>
<td>Others</td>
<td>915</td>
</tr>
</tbody>
</table>

Table 3.2: Proposed land uses for Site LHR-02
Proposed Road Network for LHR-2 (Raiwind City)

The area is already well connected through main roads including Lahore-Raiwind road, Sunder-Raiwind Road, Manga-Raiwind Road, Raiwind-Kasur Road and Road along railway line. In addition of above mentioned main roads, a new Circular Road with ROW of 120 feet is also proposed at planning boundary which will further enhance connectively of existing roads.
3.5.1.3. PROJECT AREA PA- LHR 03 (Chunia Industrial Estate)

Description of Project Area

Site falls on near Manga Mandi and connected through N-5 also known as Multan Road. It connects Chunian Industrial Estate to major settlements like Bhai Pheru, Jamber Pattoki, Okara, Multan and Karachi.
Chapter 3: PROJECT DESCRIPTION

Existing Built-up 500 Acres

Proposed Land use for LHR 03 (Chunian Industrial Estate)
To stop the haphazard growth trend Chunian Industrial Estate was proposed comprising area of 26500 acres but after passing many years only small area is colonized. That’s why 19000 acre is again converted to agriculture use while some area nearly equal to 1500 acre is kept residential as there was some trend was for residential use and some existing settlements are also present.

Table 3.3: Proposed land uses for Chunian Industrial Estate

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Land use</th>
<th>Area (Acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Residential</td>
<td>1500</td>
</tr>
<tr>
<td>2</td>
<td>Agriculture</td>
<td>19000</td>
</tr>
<tr>
<td>3</td>
<td>Industrial</td>
<td>5500</td>
</tr>
<tr>
<td>4</td>
<td>Builtup</td>
<td>500</td>
</tr>
<tr>
<td>5</td>
<td>Total</td>
<td>26500</td>
</tr>
</tbody>
</table>
Proposed Road Network for LHR-03 (Chunian Industrial Estate)

The theoretical model of connectivity has also been applied to the existing network within all project sites. The results of the models show that there is essential need for addition and up gradation of road linkages within Chunian Industrial Estate to facilitate the Industrial growth and population projected for the next 20 years. Therefore, the amendment plan suggests a bypass Road for Bhai Pheru City of 10 Km length and 120 ROW:

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Project Sites</th>
<th>Road Category</th>
<th>Right of Way (ROW)</th>
<th>Length (Kilometers)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bhai Pheru</td>
<td>Primary</td>
<td>120</td>
<td>17</td>
</tr>
</tbody>
</table>

The map shows the location/alignment of proposed intra-city roads along with their lengths and widths (RoWs) and roads classification and phasing plans for development in the city.
3.5.1.4. **PROJECT AREA (PA)-LHR-4 (MULTAN ROAD, SUE ASAL ROAD, RAIWIND AND MANGA)**

Description of Project Area

In the North, area bounded by LDA City boundary Lahore-Raiwind Road. In the East, area extends across Railway Line. In the South, area extends to the southern Railway Line and in the west, the area extends along Sunder Road & Manga Road.
Figure 3.15: Existing Land Use for (PA)-LHR-4 (MULTAN ROAD, SUE ASAL ROAD, RAIWIND AND MANGA)

Existing Builtup

3400 Acres

Proposed Land use for (PA)-LHR-4 (MULTAN ROAD, SUE ASAL ROAD, RAIWIND AND MANGA)

The proposed land uses in IMPL-2021 is promoting uni-directional V-shape growth towards South and South-West, therefore, necessary amendment in the land uses has been proposed for development of the area in an appropriate form and integrated manner based on analysis of IMPL-2021, using GIS based data collection:

- Some portion of Residential Area in South, which is presently vacant, has been proposed as Green Area (as enclosed).
- Some portion of Residential Area in South-West which is lying vacant is proposed as Green Area to balance the growth of development.
- The area where industries are developed along main roads has been proposed as Industrial Zone to meet future demand of industries.
- Area adjacent to existing residential i.e. Manga Mandi is proposed as Residential Area.
Table 3.5: Proposed Land Uses Site-LHR-04

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Land use</th>
<th>Approx. Area (Acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Industrial</td>
<td>12827</td>
</tr>
<tr>
<td>2</td>
<td>Green Area- Agriculture</td>
<td>30881</td>
</tr>
<tr>
<td>3</td>
<td>Residential</td>
<td>2586</td>
</tr>
<tr>
<td>4</td>
<td>Existing Built up</td>
<td>3400</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>49694</td>
</tr>
</tbody>
</table>

![Figure 3.16: Proposed Land use map for LHR-4 (MULTAN ROAD, SUE ASAL ROAD, RAIWIND AND MANGA)](image)

Proposed Road Network for (PA)-LHR-4 (MULTAN ROAD, SUE ASAL ROAD, RAIWIND AND MANGA)

In IMPL-2021, some Structure Plan Roads have already been proposed in the area, which are being followed by LDA in consultation with TEPA while approval of housing scheme and other development projects. The standard ROW of Structure Plan road is 150 feet.
In addition some more structure plan roads have been proposed as follows:

- Two parallel Structure Plan Roads of 150 feet width connecting Pattoki-Raiwind Road and extended towards Chuniyan Industrial Estate.
- In addition 5 roads having ROW of 80 feet are also proposed which will provide connection to Manga-Raiwind Road and Sundar-Raiwind Road at different sections.

The detail of proposed roads in tabular form is as follows:

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Road Category</th>
<th>ROW (Feet)</th>
<th>Length (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Link Road</td>
<td>80'</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Link Road</td>
<td>80'</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Link Road</td>
<td>80'</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>Link Road</td>
<td>80'</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>Link Road</td>
<td>80'</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>Major Road</td>
<td>150'</td>
<td>30</td>
</tr>
<tr>
<td>7</td>
<td>Major Road</td>
<td>150'</td>
<td>30</td>
</tr>
</tbody>
</table>
3.5.2. **DISTRICT NANKANA SAHIB**

Nine project areas fall in district Nankana Sahib, detail description of which is given as under:-

3.5.2.1. **Project Area (PA)-NSB-01(Mandi Faizabad)**

Description of Project Area

In the North: About 1 km away from Jaranwala Road.

In the South: About 1.5 km on Mandi Faizabad-Nawan Kot Road till distributary.

In the East: 1 km before Mirzapur on Jaranwala Road.

In the West: Till Astana Aliya Rehan wala on Jaranwala Road.
Chapter 3: PROJECT DESCRIPTION

Existing Built-up Area 359.85 Acres

Proposed Landuses

The land uses are distributed in terms of residential, industrial, and special development zones in the proposed project site. Description of proposed land uses is as under:

Table 3.6: Proposed land uses for Site NSB-01 (Mandi Faizabad)

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Land use</th>
<th>Area (Acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Total Project Area</td>
<td>1516</td>
</tr>
<tr>
<td></td>
<td>Residential Purposed</td>
<td>810</td>
</tr>
<tr>
<td>2</td>
<td>Industrial Purposed</td>
<td>324</td>
</tr>
<tr>
<td>3</td>
<td>Built up</td>
<td>400</td>
</tr>
</tbody>
</table>
The area allocations made above have been shown in the proceeding map, where most of the residential development is proposed contiguous to the existing built-up area in almost all directions along radial roads but in a circular and compact form.

Figure 3.19: Proposed Land Use Map for NSB-01 (Mandi Faizabad)

Road Network for NSB-01 (Mandi Faizabad)

The connectivity/linkages issues related to existing transportation system within major urban centers within Lahore Division. The theoretical model of connectivity has also been applied to the existing network within all project sites. The results of the models shows that there is an essential need for additional roads and up gradation of existing road linkages within Mandi Faizabad to facilitate the population projected for the next 20 years. Therefore, the amendment plan suggests a number intra city roads as mentioned in the following table:

Table 3.7: Proposed Roads and Right of Ways

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Road Category</th>
<th>Right of Way (ROW)</th>
<th>Length (Kilometers)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Primary</td>
<td>150</td>
<td>53</td>
</tr>
<tr>
<td>2</td>
<td>Secondary</td>
<td>120</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>Tertiary</td>
<td>80</td>
<td>9</td>
</tr>
</tbody>
</table>

Total 11 new roads have been proposed in the project area with ROWs of 80 ft and 120 ft
Chapter 3: PROJECT DESCRIPTION

80 Feet Wide Roads
There are seven 80ft roads proposed in the Site Area on of which is proposed in Site NSB-01 (Mandi Faizabad). Four roads are linked with Jarranwala road and connecting the proposed bypass. Another 80ft road is proposed to connect all other proposed 80ft roads.

120ft Roads
The bypass road proposed around the project area having the ROW 120ft which is connecting the proposed 80ft road.

150ft Roads
Three 150ft roads have been proposed, all of them are connecting 120ft bypass road with the other project sites.

Similarly, the following map shows the location/alignment of proposed intra-city roads along with their lengths and widths (RoWs). The following map also shows the roads classifications and phasing plans for their development in the city.

![Map of Proposed Road Network](image)

Figure 3.20: Proposed road network for NSB-01 (Mandi Faizabad)

3.5.2.2. Project Area (PA) -NSB-02 (Syed Wala)

Description of Project Area
In the North: About 600 Meters from Main Bazar Syed Wala on Jaranwala-Syed wala Road.
In the South: Till Syed Wala-Barra Ghar-Bucheki Road.

In the East: About 2km away from Jaranwala-Syed Wala Road.

In the West: About 700 meters away from Jaranwala-Syed Wala Road.

![Map of project area](image)

Figure 3.21: Existing Land uses for (PA)-NSB-02 (Syed Wala)

Existing Built-up Area

163.24 Acres

Proposed Landuses

The land uses are distributed in terms of residential, industrial, and special development zones in the proposed project site. Description of proposed land uses is as under:-

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Land use</th>
<th>Area (Acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Project Area Total</td>
<td>380</td>
</tr>
<tr>
<td>2</td>
<td>Builtup Area</td>
<td>163</td>
</tr>
<tr>
<td>3</td>
<td>Proposed</td>
<td>217</td>
</tr>
</tbody>
</table>
Chapter 3: PROJECT DESCRIPTION

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Land use</th>
<th>Area (Acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Residential</td>
<td></td>
</tr>
</tbody>
</table>

The area allocations made above have been shown in the proceeding map, where most of the residential development is proposed contiguous to the existing built-up area in almost all directions along radial roads but in a circular and compact form.

![Proposed Land Use Map for NSB-02 (Syed Wala)](image)

Figure 3.22: Proposed Land Use Map for NSB-02 (Syed Wala)

Road Network for NSB-02 (Syed Wala)

The connectivity/linkages issues related to existing transportation system within major urban centers within Lahore Division. The theoretical model of connectivity has also been applied to the existing network within all project sites. The results of the models shows that there is an essential need for additional roads and up gradation of existing road linkages within Syed Wala to facilitate the population projected for the next 20 years. Therefore, the amendment plan suggests a number intra city roads as mentioned in the following table:
Total 5 new roads have been proposed in the project area with ROWs of 80 ft and 120 ft.

80 Feet Wide Roads:
There are four secondary roads of 80ft width in proposed project site NSB-02 (Syed Wala). Three of these proposed roads are connecting proposed ring road while one road is connecting proposed ring road and Bucheki road.

120ft Roads
The bypass road proposed all around the project area having the ROW 120ft which is connecting the proposed 80ft road.

Map given below shows the location/alignment of proposed intra-city roads along with their lengths and widths (RoWs). The following map also shows the roads classifications and phasing plans for their development in the city.
3.5.2.3. Project Area (PA)-NSB-03 (Bucheki)

Description of Project Area

In the North: Till Attari Ram Singh on Nankana Road

In the South: About 600 meters away from Bucheki bypass on Syed wala-Bara Ghar Road.

In the East: About 2 km from Bucheki Bypass on Jaranwala-Lahore Road

In the West: Till District Nankana Sahib limits
Chapter 3: PROJECT DESCRIPTION

Existing Built-up Area 504 Acres

Proposed Landuses
The land uses are distributed in terms of residential and industrial zones in the proposed project site. Description of proposed land uses is as under:-

Table 3.10: Proposed land uses for Site NSB-03 (Bucheki)

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Land use</th>
<th>Area (Acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Total Project Area</td>
<td>1372</td>
</tr>
<tr>
<td></td>
<td>Builtup</td>
<td>504</td>
</tr>
<tr>
<td>2</td>
<td>Residential Purposed</td>
<td>431</td>
</tr>
<tr>
<td>3</td>
<td>Industrial Purposed</td>
<td>437</td>
</tr>
</tbody>
</table>
The area allocations made above have been shown in the proceeding map, where most of the residential development is proposed contiguous to the existing built-up area in almost all directions along radial roads but in a circular and compact form and due to non-availability of designated space for industrial units, there is need to extend area for industrial use in order to achieve compact growth.

The area allocations made above have been shown in the proceeding map, where most of the residential development is proposed contiguous to the existing built-up area in almost all directions along radial roads but in a circular and compact form.

Road Network for NSB-03 (Bucheki)

The connectivity/linkages issues related to existing transportation system within major urban centers within Lahore Division. The theoretical model of connectivity has also been applied to the existing network within all project sites. The results of the models shows that there is an essential need for additional roads and up gradation of existing road linkages within Bucheki to facilitate the population projected for the
next 20 years. Therefore, the amendment plan suggests a number intra city roads as mentioned in the following table:

Table 3.11: Proposed Roads and Right of Ways

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Road Category</th>
<th>Right of Way (ROW)</th>
<th>Length (Kilometers)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Primary</td>
<td>120</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>Secondary</td>
<td>80</td>
<td>10</td>
</tr>
</tbody>
</table>

Total 8 new roads have been proposed in the project area with ROWs of 80 ft and 120ft.

80 Feet Wide Roads

There are seven secondary roads of 80ft width in proposed project site NSB-03 (Bucheki). All of these proposed roads are connecting the proposed ring road. While four of these roads are connecting Lahore Jaranwala Road and the proposed 120 feet wide road.

120ft Roads

The bypass road proposed all around the project area having the ROW 120ft which is connecting the proposed 80ft road.

Map given below shows the location/alignment of proposed intra-city roads along with their lengths and widths (RoWs). The following map also shows the roads classifications and phasing plans for their development in the city.
3.5.2.4. **Project Area (PA)-NSB-04 (Nankana Sahib)**

Description of Project Area

In the North: 1 km away from Manawala Bypass on Shahkot Road

In the South: About 300 meters away from Nankana Sahib on Mangtawala Road

In the East: About 300 meters from Nankana Sahib Bypass on Nankana-Warburton Road

In the West: About 300 meters away from Manawala Bypass on Jaranwala Road
Proposed Landuse

The area allocations made above have been shown in the proceeding map, where most of the residential development is proposed contiguous to the existing built-up area in almost all directions along radial roads but in a circular and compact form. All ODPs are retained as such.
Figure 3.28: Proposed Land uses of SITE-NSB-04 (Nankana Sahib)

Road Network for NSB-04 (Nankana Sahib)

No roads are proposed in the subject cite and the map showing existing road network is as under:-
Project Area -NSB-05 (Shahkot-I)

Description of Project Area

In the North: Till Chak # 82 Rasulpur Araian on Safdarabad-Shahkot Road

In the South: Till Shahkot Minor on Jaranwala Road

In the East: Till Crescent cotton Mills Shahkot on Lahore-Sheikhupura-Faisalabad Road

In the West: Till Nankana Sahib District limits
Chapter 3: PROJECT DESCRIPTION

Figure 3.30: Existing Land uses for NSB-05 (Shahkot-I)

Existing Built-up Area 1678 Acres

Proposed Landuses

Population has increased up to 64150 in 2015 and proposed population for 2035 i.e 114297 required which requires additional 15,607 housing units to accommodate the future population of the city. By considering this, to achieve the compact development, following table is designed to show the existing and future need for extension of the area specifically for residential zone.

Table 3.12: Proposed land uses for Site NSB-05 (Shahkot-I)

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Land use</th>
<th>Area (Acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Project Area</td>
<td>3314</td>
</tr>
<tr>
<td>1</td>
<td>Builtup Area</td>
<td>1678</td>
</tr>
<tr>
<td>2</td>
<td>Residential</td>
<td>1636</td>
</tr>
</tbody>
</table>
Figure 3.31: Proposed Land Use Map for NSB-05 (Shahkot-I)

Road Network for NSB-05 (Shahkot-I)

The connectivity/linkages issues related to existing transportation system within major urban centers within Lahore Division. The theoretical model of connectivity has also been applied to the existing network within all project sites. The results of the models shows that there is an essential need for additional roads and up gradation of existing road linkages within Shahkot to facilitate the population projected for the next 20 years. Therefore, the amendment plan suggests a number intra city roads as mentioned in the following table:

Table 3.13: Proposed Roads and Right of Ways

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Road Category</th>
<th>Right of Way (ROW)</th>
<th>Length (Kilometers)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Primary</td>
<td>120</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>Secondary</td>
<td>80</td>
<td>13</td>
</tr>
</tbody>
</table>

Source: Amendment Plan, 2015

Similarly, the following map shows the location/alignment of proposed intra-city roads along with their lengths and widths (RoWs). The following map also shows the roads classifications and phasing plans for their development in the city.
Total 3 new roads have been proposed in the project area with ROWs of 80 ft and 120 ft

80 Feet Wide Roads

There are two secondary roads of 80ft width in proposed project site NSB-05 (Bucheki). One of these roads is connecting the proposed bypass with Shahkot-Sangla Hill Road, Lahore Shekhupura Road, Shahkor Salar wala road while other one is passing through Nankana Road, Jarawalan Road and proposed bypass.

120ft Roads

The bypass proposed all around the project area having the ROW 120ft which is connecting the proposed 80ft road.

Map given below shows the location/alignment of proposed intra-city roads along with their lengths and widths (RoWs). The following map also shows the roads classifications and phasing plans for their development in the city.

![Figure 3.32: Proposed Road Network for NSB-05 (Shahkot-I)](image-url)
Project Area (PA)-NSB-06 (Sangla Hill)

Description of Project Area

In the North: about 600 meters from Ahmad Town Scheme & till Bhulair on Bhulair Road

In the South: Till TEVTA Building on Shahkot-Sangla Hill Road

In the East: about 2.5 km away from Railway Station along Railway line

In the West: Till Nankana Sahib District limits

Figure 3.33: Existing Land uses for NSB-06 (Sangla Hill)

Existing Built-up Area 1694 Acres

Proposed Landuses

Population has increased up to 75130 in 2015 and proposed population for 2035 i.e 120258 required which requires 16034 housing units to accommodate the future population of the city. Therefore, the total area proposed for residential development
is around 806 acres, and no area is reserved for industrial development because this project site is declared as negative area by the industries department.

Table 3.14: Proposed land uses for Site NSB-06 (Sangla Hill City)

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Land use</th>
<th>Area (Acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Project Area</td>
<td>3226</td>
</tr>
<tr>
<td>1</td>
<td>Residential</td>
<td>1532</td>
</tr>
<tr>
<td></td>
<td>Built up</td>
<td>1694</td>
</tr>
</tbody>
</table>

The area allocations made above have been shown in the proceeding map, where most of the residential development is proposed contiguous to the existing built-up area in almost all directions along radial roads but in a circular and compact form.

Figure 3.34: Proposed Land Use Map for NSB-06 (Sangla Hill)

Road Network for NSB-06 (Sangla Hill)

The connectivity/linkages issues related to existing transportation system within major urban centers within Lahore Division. The theoretical model of connectivity has also been applied to the existing network within all project sites. The results of the models shows that there is an essential need for additional roads and upgradation of existing road linkages within Sangla Hill to facilitate the population projected for
the next 20 years. Therefore, the amendment plan suggests a number intra city roads as mentioned in the following table:

Table 3.15: Proposed Roads and Right of Ways

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Road Category</th>
<th>Right of Way (ROW)</th>
<th>Length (Kilometers)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Primary</td>
<td>120</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>Secondary</td>
<td>80</td>
<td>11</td>
</tr>
</tbody>
</table>

Similarly, the following map shows the location/alignment of proposed intra-city roads along with their lengths and widths (RoWs). The following map also shows the roads classifications and phasing plans for their development in the city.

Total 6 new roads have been proposed in the project area with ROWs of 80 ft and 120 ft

80 Feet Wide Roads
There are five 80ft wide roads in proposed project site NSB-06 (Sangla Hill). Two of these roads are connecting the proposed bypass with Sangla Hill Road and railway station road while rest of the roads are connected with the proposed bypass of 120 feet width.

120ft Roads
The bypass proposed all around the project area having the ROW 120ft which is connecting the proposed 80ft road.

Map given below shows the location/alignment of proposed intra-city roads along with their lengths and widths (RoWs). The following map also shows the roads classifications and phasing plans for their development in the city.
Amendment in Master Plan for Lahore Division (The Project)
Environmental Impact Assessment (EIA) Report

Chapter 3: PROJECT DESCRIPTION

Figure 3.35: Proposed Road Network for NSB-06 (Sangla Hill)

Project Area (PA) -NSB-07 (More Khunda)

Description of Project Area

In the North: About 1.8 km from Lahore-Jaranwala Road

In the South: Till More Khunda Bypass on Bhai Pheru-Halla Road

In the East: Till Petrol Pump on Lahore-Jaranwala Road

In the West: Till More Khunda Bypass on Lahore Jaranwala Road
Chapter 3: PROJECT DESCRIPTION

Figure 3.36: Existing Land uses for NSB-07 (More Khuda)

Existing Built-up Area

676 Acres

Proposed Landuses

Accordingly, the distribution of land uses in terms of residential, industrial, and special development zones are accounted in the following table, wherein the total area proposed for residential development is around 460 acres.

Table 3.16: Proposed land uses for Site NSB-07-(Morr Khunda)

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Land use</th>
<th>Area (Acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Total project Area</td>
<td>1136</td>
</tr>
<tr>
<td>2</td>
<td>Residential</td>
<td>460</td>
</tr>
<tr>
<td>3</td>
<td>Built up</td>
<td>438</td>
</tr>
<tr>
<td>4</td>
<td>Agriculture</td>
<td>360</td>
</tr>
</tbody>
</table>
Chapter 3: PROJECT DESCRIPTION

Road Network for NSB-07 (Morr Khunda)

The connectivity/linkages issues related to existing transportation system within major urban centers within Lahore Division. The theoretical model of connectivity has also been applied to the existing network within all project sites. The results of the models shows that there is an essential need for additional roads and up gradation of existing road linkages within Morr Kunda to facilitate the population projected for the next 20 years. Therefore, the amendment plan suggests a number intra city roads as mentioned in the following table:

Table 3.17: Proposed Roads and Right of Ways

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Road Category</th>
<th>Right of Way (ROW)</th>
<th>Length (Kilometers)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Primary</td>
<td>120</td>
<td>00</td>
</tr>
<tr>
<td>2</td>
<td>Secondary</td>
<td>80</td>
<td>15</td>
</tr>
</tbody>
</table>

Source: Amendment Plan, 2015

Figure 3.37: Proposed Land Use Map for NSB-07 - (Morr Khunda)
Similarly, the following map shows the location/alignment of proposed intra-city roads along with their lengths and widths (RoWs). The following map also shows the roads classifications and phasing plans for their development in the city.

Total seven roads are proposed in the subject site detail of which is as under:

80 Feet Road
There are six 80ft roads proposed in the project area, out of which three are connecting Lahore-Jarranwala road. The other three are passing through the residential area to increase connectivity.

120ft Roads
The bypass proposed all around the project area having the ROW 120ft which is connecting the proposed 80ft road.

Map given below shows the location/alignment of proposed intra-city roads along with their lengths and widths (RoWs). The following map also shows the roads classifications and phasing plans for their development in the city.

![Figure 3.38: Proposed Road Network for NSB=07 (Morr Khunda)](image-url)
Proposed Project Area (PA)-NSB-08 (Shahkot-II)

Description of Project Area

In the North: About 1.5 km from Lahore-Sheikhupura-Faisalabad Road

In the South: About 700 meters away from Lahore-Sheikhupura-Faisalabad Road

In the East: Till end of Crescent Cotton Mills

In the West: Till Shahkot Flour Mill

Figure 3.39: Existing Land uses for NSB-08 (Shahkot-II)

Existing Built-up Area 627.30 Acres

Proposed Landuses

Accordingly, the distribution of land uses in terms of industrial zones is accounted in the following table, wherein the no area is proposed for residential development, and the area reserved for industrial development accounts to 627 acres. A relatively larger allocation for industrial development in Shahkot-II is due to existing large scale industries in the area and its positioning as a production center for Lahore Division.
Chapter 3: PROJECT DESCRIPTION

Table 3.18: Proposed Land Uses For Site NSB-08 (Shahkot-II)

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Land use</th>
<th>Area (Acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Total Project Area</td>
<td>1029</td>
</tr>
<tr>
<td>2</td>
<td>Proposed Industrial</td>
<td>759</td>
</tr>
<tr>
<td>3</td>
<td>Proposed Agriculture</td>
<td>270</td>
</tr>
</tbody>
</table>

Road Network for NSB-08 (Shahkot-II)

The connectivity/linkages issues related to existing transportation system within major urban centers within Lahore Division. The theoretical model of connectivity has also been applied to the existing network within all project sites. The results of the models shows that there is an essential need for additional roads and up gradation of existing road linkages within Shahkot city to facilitate the population projected for the next 20 years. Therefore, the amendment plan suggests a number intra city roads as mentioned in the following table:
Chapter 3: PROJECT DESCRIPTION

Table 3.19: Proposed Roads and Right of Ways

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Road Category</th>
<th>Right of Way (ROW)</th>
<th>Length (Kilometers)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Primary</td>
<td>120</td>
<td>00</td>
</tr>
<tr>
<td>2</td>
<td>Secondary</td>
<td>80</td>
<td>10</td>
</tr>
</tbody>
</table>

Source: Amendment Plan, 2015

Total seven roads are proposed in the subject site detail of which is as under:

80 Feet Road
There are four 80ft roads proposed in the project area, out of which two are connecting with Lahore-Faisalabad road. The other two are passing through the industrial area to increase connectivity.

120ft Roads
The bypass proposed all around the project area having the ROW 120ft which is connecting the proposed 80ft road.

Map given below shows the location/alignment of proposed intra-city roads along with their lengths and widths (RoWs). The following map also shows the roads classifications and phasing plans for their development in the city.
Project Area (PA)-NSB-09-(Warburton)

Description of Project Area

Area of length about 1.5 km towards North West, from Railway station Warburon. Area towards distributary Nanakana Sahib Warburton road in the South.
Proposed Land uses

Accordingly, the distribution of land uses in terms of residential, industrial, and special development zones are accounted in the following table.

Table 3.20: Proposed land uses for Site NSB-09 (Warburton)

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Land use</th>
<th>Area (Acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total project Site</td>
<td>885</td>
</tr>
<tr>
<td>1</td>
<td>Proposed Residential</td>
<td>242</td>
</tr>
<tr>
<td>2</td>
<td>Proposed Industrial</td>
<td>283</td>
</tr>
<tr>
<td>3</td>
<td>Proposed Agriculture</td>
<td>360</td>
</tr>
</tbody>
</table>
The connectivity/linkages issues related to existing transportation system within major urban centers within Lahore Division. The theoretical model of connectivity has also been applied to the existing network within all project sites. The results of the models shows that there is an essential need for additional roads and up gradation of existing road linkages within Warburton project site to facilitate the population projected for the next 20 years. Therefore, the amendment plan suggests a number intra city roads as mentioned in the following table:

Table 3.21: Proposed Roads and Right of Ways

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Road Category</th>
<th>Right of Way (ROW)</th>
<th>Length (Kilometers)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Primary</td>
<td>120</td>
<td>00</td>
</tr>
<tr>
<td>2</td>
<td>Secondary</td>
<td>80</td>
<td>12</td>
</tr>
</tbody>
</table>

Total ten roads are proposed in the subject site detail of which is as under:
80 Feet Road

There are nine 80ft roads proposed in the project area, out of which two are connecting Nankana Sahib-warburton road, two roads are linked with link warburton road. The other remaining are passing through the residential area to increase connectivity.

120ft Roads

The bypass proposed all around the project area having the ROW 120ft which is connecting the proposed 80ft road.

Map given below shows the location/alignment of proposed intra-city roads along with their lengths and widths (RoWs). The following map also shows the roads classifications and phasing plans for their development in the city.

Figure 3.44: Proposed Road Network for NSB-09 (Warburton)

Proposed Project Area Site-NSB-10 (Shahkot-III)

Description of Project Area

The area of this site runs on both sides of Sheikhupura-Faisalabad Road adjacent to the Site-NSB-10.
Proposed Landuses

Accordingly, the total area proposed for residential development is around 294 acres, and no area reserved for industrial development.

Table 3.22: Proposed Land Uses for Shahkot City

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Land use</th>
<th>Area (Acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total project Area</td>
<td>469</td>
</tr>
<tr>
<td>1</td>
<td>Proposed Residential</td>
<td>294</td>
</tr>
<tr>
<td>2</td>
<td>Built up</td>
<td>175</td>
</tr>
</tbody>
</table>
Figure 3.46: Proposed Land Use Map for NSB-10 (Shahkot-III)

Roads Network for NSB-10 (Shahkot-III)

No new structure plan road is proposed in the subject site.
3.5.3. **DISTRICT KASUR**

Sixteen project areas fall in district Kasur detail description of which is given as under:-

3.5.3.1. **Project Area (PA)-K-01 (Kasur)**

Description of Project Area

Boundary in the form of circle about 8 km diameter around the Kasur City
Chapter 3: PROJECT DESCRIPTION

Figure 3.48: Existing land use for k-01 Kasur city site

Existing Builtup Area 4429 Acres

Proposed Land Use:
The distributions of land uses in terms of residential and industrial zones are accounted in the following table, wherein the total area proposed for residential development is around 6193 acres. (Project Site 01, Kasur City).

Table 3.23: Proposed land uses for Kasur City

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Land use</th>
<th>Area (Acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Total Project Area</td>
<td>13161</td>
</tr>
<tr>
<td>2</td>
<td>Built-up</td>
<td>4429</td>
</tr>
<tr>
<td>3</td>
<td>Proposed Residential</td>
<td>6193</td>
</tr>
<tr>
<td>4</td>
<td>Proposed Industrial</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>Others</td>
<td>2539</td>
</tr>
</tbody>
</table>

Source: Amendment Plan 2015
The area allocations made above have been shown in the proceeding map, where most of the residential development is proposed contiguous to the existing built-up area in almost all directions along radial roads but in a circular and compact form.

Roads Network for k-01 Kasur City Site:
The theoretical model of connectivity has also been applied to the existing network within all project sites. The results of the models shows that there is essential need for addition and up gradation of road linkages within Kasur City to facilitate the population projected for the next 20 years. Therefore, the amendment plan suggests a number intra city roads as mentioned in the following table:
Table 3.24: Proposed Roads and Right of Ways

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Road Category</th>
<th>Right of Way (ROW)</th>
<th>Length (Kilometers)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Kasur Ring Road</td>
<td>120</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>Link Road</td>
<td>150</td>
<td>36</td>
</tr>
</tbody>
</table>

Source: Amendment Plan, 2015

Similarly, the following map shows the location/alignment of proposed intra-city roads along with their lengths and widths (RoWs). The following map also shows the roads classifications and phasing plans for their development in the city.

3.5.3.2. Project Area (PA)-K-02 (Mustafabad)

Description of Project Area

Boundary of about 2.9 km radius in the form of Semi Circle around the Mustafabad in the western direction along Ferozpur road.
Figure 3.50: Existing Land Use for K-02 Mustafabad Site

Existing Builtup Area 786.74 Acres

Proposed Project Area Master Plan

The distribution of land uses in terms of residential is accounted in the following table, wherein the total area proposed for residential development is around 1156 acres.

Population has increased upto 67,186 in 2015 and built-up area 741 acres. Proposed population for 2035 i.e 66242 required 730 acres area to accommodate the future population. By considering this, to achieve the compact development,
following table is designed to show the existing and future need for extension of the area specifically for residential zone.

Table 3.25: Proposed land uses for Mustafa abad

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Land use</th>
<th>Area (Acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Total Project Area</td>
<td>2700</td>
</tr>
<tr>
<td>2</td>
<td>Residential Area</td>
<td>1156</td>
</tr>
<tr>
<td>3</td>
<td>Built up Area</td>
<td>786.64</td>
</tr>
<tr>
<td>4</td>
<td>Industrial Area</td>
<td>87</td>
</tr>
<tr>
<td>5</td>
<td>Others</td>
<td>671</td>
</tr>
</tbody>
</table>

Source: Amendment Plan 2015
Chapter 3: PROJECT DESCRIPTION

Figure 3.51 Proposed Land Use for K-02 Mustafabad Site

Road Network for K-02 Mustafabad Site:
The theoretical model of connectivity has also been applied to the existing network within all project sites. The results of the models show that there is essential need for addition and upgradation of road linkages within Mustafabad to facilitate the population projected for the next 20 years. Therefore, the amendment plan suggests a bypass Road for Mustafabad City:

Table 3.26: Proposed Roads and Right of Ways

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Project Sites</th>
<th>Road Category</th>
<th>Right of Way (ROW)</th>
<th>Length (Kilometers)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mustafabad</td>
<td>Primary</td>
<td>120</td>
<td>04</td>
</tr>
</tbody>
</table>

Source: Amendment Plan, 2015

Similarly, the following map shows the location/alignment of proposed intra-city roads along with their lengths and widths (RoWs). The following map also shows the roads classifications and phasing plans for their development in the city.
3.5.3.3. Project Area (PA)-K-03 (Industrial Estate)

Description of Project Area

Boundary of about 2.7 km radius in the form of Semi Circle around the in the western direction along Ferozpur road.

Figure 3.52: Road Network map for K-02 Mustafabad Site
Chapter 3: PROJECT DESCRIPTION

Figure 3.53: Existing Land Use for K-03 Industrial Estate Site

Exisiting Buildup Area 0 Acres

Proposed Land Uses:
Due to non-availability of space for industrial units, industries have been developed around the Small Industrial Estate haphazardly. There is need to extend area for industrial use in order to achieve compact growth. Following is the detail of area proposed for industries and proposed road in Industrial Estate:

Table 3.27: Proposed land uses for Industrial Estate

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Land use</th>
<th>Area (Acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Residential</td>
<td>Nil</td>
</tr>
<tr>
<td>2</td>
<td>Industrial</td>
<td>1017</td>
</tr>
<tr>
<td>3</td>
<td>Total</td>
<td>1017</td>
</tr>
</tbody>
</table>

Source: Amendment Plan 2015
Figure 3.54 Proposed Land Uses for K-03 (Kasur Industrial Estate)

Road Network for K-03 Kasur Industrial Estate:

Table 3.28: Proposed Roads and Right of Ways

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Project Sites</th>
<th>Road Category</th>
<th>Right of Way (ROW)</th>
<th>Length (Kilometers)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Industrial Estate</td>
<td>Primary</td>
<td>120</td>
<td>05</td>
</tr>
</tbody>
</table>

Source: Amendment Plan, 2015
3.5.3.4. Project Area (PA)-K-04 (Khudian Khas)

Description of Project Area

Boundary of about 2.3 km radius in the form of Semi Circle around the Khudian in the north western direction.
Proposed Land Uses:

the distribution of land uses in terms of residential is accounted in the following table, wherein the total area proposed for residential development is around 710 acres, and no area is reserved for industrial development by keeping in view the existing trend as no industry is present in Khudian Khas.

Population has increased up to 41,505 in 2015 and built-up area 494 acres. Proposed population for 2035 i.e 82,587 required 480 acres area in addition to existing proposes to accommodate the future population. By considering this, to achieve the compact development, following table is designed to show the existing and future need for extension of the area specifically for residential zone.
Chapter 3: PROJECT DESCRIPTION

Table 3.29: Proposed land uses for Kasur

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Land use</th>
<th>Area (Acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Total Area</td>
<td>1812</td>
</tr>
<tr>
<td>2</td>
<td>Residential</td>
<td>710</td>
</tr>
<tr>
<td>3</td>
<td>Industrial</td>
<td>Nil</td>
</tr>
<tr>
<td>4</td>
<td>Built-up</td>
<td>597</td>
</tr>
<tr>
<td>5</td>
<td>Others</td>
<td>505</td>
</tr>
</tbody>
</table>

Source: Amendment Plan 2015

Figure 3.57 Proposed Land uses for k-04 Khudian Khas Site

Road Network for k-04 Khudian Khas Site:

The theoretical model of connectivity has also been applied to the existing network within all project sites. The results of the models show that there is essential need for addition and upgradation of road linkages within Khudian Khas to facilitate the population projected for the next 20 years. Therefore, the amendment plan suggests a bypass Road in the North-Eastern side of Khudian Khas:
Table 3.30: Proposed Roads and Right of Ways

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Project Sites</th>
<th>Road Category</th>
<th>Right of Way (ROW)</th>
<th>Length (Kilometers)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Jamber</td>
<td>Primary</td>
<td>120</td>
<td>3</td>
</tr>
</tbody>
</table>

Source: Amendment Plan, 2015

Similarly, the following map shows the location/alignment of proposed intra-city roads along with their lengths and widths (RoWs). The following map also shows the roads classifications and phasing plans for their development in the city.

Figure 3.58: Road Network map for k-04 Khudian Khas Site
3.5.3.5. Project Area (PA)-K-05 (Rao Khan Wala)

Description of Project Area

Boundary in the form of circle about 1.6 km diameter around the Rao Khan Wala.

Figure 3.59: Existing Land Uses for K-05 Rao Khan Wala Site

Existing Built up Area 162.03 Acres

Proposed Project Area Master Plan

Rao Khan Wala situated in the north-eastern side of Kasur. Population has increased upto 20,070 in 2015 and built up area 162 acres. Proposed population for 2035 is 28,283 required 200 Acres area to accommodate the future population. By considering this, to achieve the compact development, the distribution of land uses in terms of residential is accounted in the following table:-
Chapter 3: PROJECT DESCRIPTION

Table 3.31: Proposed land uses for Rao Khan Wala

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Land use</th>
<th>Area (Acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Total Area</td>
<td>493</td>
</tr>
<tr>
<td>2</td>
<td>Residential</td>
<td>331</td>
</tr>
<tr>
<td>3</td>
<td>Built up Area</td>
<td>162</td>
</tr>
</tbody>
</table>

Source: Amendment Plan 2015

Figure 3.60 Proposed Land Uses for K-05 Rao Khan Wala Site
Chapter 3: PROJECT DESCRIPTION

Road Network for K-05 Rao Khan Wala Site:

Table 3.32: Proposed Roads and Right of Ways

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Project Sites</th>
<th>Road Category</th>
<th>Right of Way (ROW)</th>
<th>Length (Kilometers)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rao Khan Wala</td>
<td>Primary</td>
<td>120</td>
<td>05</td>
</tr>
</tbody>
</table>

Source: Amendment Plan, 2015

3.5.3.6. **Project Area-K-06 (Raja Jang)**

Description of Project Area

Boundary in the form of circle about 1.6 km diameter around the Raja Jang
Chapter 3: PROJECT DESCRIPTION

Figure 3.62: Existing Land uses for K-06 Raja Jang Site

Existing Builtup Area 224.49 Acres

Proposed Land Uses:

Raja Jang situated in the north-eastern side of Kasur. Population has increased up to 28,033 in 2015 and built up area 247 acres. Proposed population for 2035 is 39,505 required 300 acres area to accommodate the future population. By considering this, to achieve the compact development, the distribution of land uses in terms of residential is accounted in the following table:

Table 3.33: Proposed Land Uses for Raja Jang

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Land use</th>
<th>Area (Acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Residential</td>
<td>454</td>
</tr>
<tr>
<td>2</td>
<td>Built up</td>
<td>224</td>
</tr>
<tr>
<td>2</td>
<td>Total</td>
<td>454</td>
</tr>
</tbody>
</table>
Figure 3.63: Proposed Land Uses for K-06 Raja Jang Site

Road Network for K-06 Raja Jang Site:

Table 3.34: Proposed Roads and Right of Ways

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Project Sites</th>
<th>Road Category</th>
<th>Right of Way (ROW)</th>
<th>Length (Kilometers)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Raja Jang</td>
<td>Primary</td>
<td>120</td>
<td>03</td>
</tr>
</tbody>
</table>

Source: Amendment Plan 2015
3.5.3.7. Project Area (PA)-K-07 (Kot Radha Kishan)

Description of Project Area

Boundary in the form of circle about 3.8 km diameter around the Kot Radha Kishan.
Chapter 3: PROJECT DESCRIPTION

Proposed Land Uses:
The distribution of land uses in terms of residential, industrial, are accounted in the following table, wherein the total area proposed for residential development is around 1417 acres.

Population has increased upto 62,629 in 2015 and built-up area 1235 acres. Proposed population for 2035 is 1,07,539 required 884 acres area to accommodate the future population. By considering this, to achieve the compact development,
following table is designed to show the existing and future need for extension of the area specifically for residential zone.

Table 3.35: Proposed land uses for Kot Radha Kishan

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Land use</th>
<th>Area (Acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Total Project Area</td>
<td>2351</td>
</tr>
<tr>
<td>2</td>
<td>Residential</td>
<td>1427</td>
</tr>
<tr>
<td>3</td>
<td>Built-up</td>
<td>1057</td>
</tr>
</tbody>
</table>

Source: Amendment Plan 2015

Figure 3.66: Proposed Land uses for K-07 Kot Radha Kishan Site
Road Network for K-07 Kot Radha Kishan:
The theoretical model of connectivity has also been applied to the existing network within all project sites. The results of the models show that there is essential need for addition and upgradation of road linkages within Kot Radha Kishan City to facilitate the population projected for the next 20 years. Therefore, the amendment plan suggests a ring road around Kot Radha Kishan:

Table 3.36: Proposed Roads and Right of Ways of Kot Radha Kishan

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Project Sites</th>
<th>Road Category</th>
<th>Right of Way (ROW)</th>
<th>Length (Kilometers)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Kot Radha Kishan</td>
<td>Primary</td>
<td>120</td>
<td>17</td>
</tr>
</tbody>
</table>

Source: Amendment Plan, 2015

Similarly, the following map shows the location/alignment of proposed intra-city roads along with their lengths and widths (RoWs). The following map also shows the roads classifications and phasing plans for their development in the city.
3.5.3.8. Project Area (PA)-K-08- (Changa Manga)

Description of Project Area

Boundary of about 1.5 km diameter in the form of Semi Circle around the Changa Manga in the north western direction.
Figure 3.68: Existing Land use for K-08 Changa Manga Site

Existing Builtup Area

285 Acres

Proposed Land Uses:

the distribution of land uses in terms of residential, industrial, are accounted in the following table, wherein the total area proposed for residential development is around 255 acres, and no area is reserved for industrial development by keeping in view the existing trend as no demand of industrial development there.

Population has increased up to 10260 in 2015 and buildup area 285 acres. Proposed population for 2035 i.e 19451 required 625 Acres area to accommodate
the future population. By considering this, to achieve the compact development, following table is designed to show the existing and future need for extension of the area specifically residential activity.

Table 3.37: Proposed land uses for Changa Manga

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Land use</th>
<th>Area (Acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Total Project Site</td>
<td>542</td>
</tr>
<tr>
<td>2</td>
<td>Built up</td>
<td>285</td>
</tr>
<tr>
<td>3</td>
<td>Residential</td>
<td>255</td>
</tr>
</tbody>
</table>

Source: Amendment Plan 2015
Figure 3.69: Proposed Land Uses for K-08 Changa Manga Site

Roads Network for K-08 Changa Manga Site:
The theoretical model of connectivity has also been applied to the existing network within all project sites. The results of the models show that there is essential need for addition and up gradation of road linkages within Changa Manga City to facilitate the population projected for the next 20 years. Therefore, the amendment plan suggests a ring road around Changa Manga City of 4 Km length having 120 feet ROW:
Table 3.38: Proposed Roads and Right of Ways of Chunian City

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Project Sites</th>
<th>Road Category</th>
<th>Right of Way (ROW)</th>
<th>Length (Kilometers)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Changa Manga</td>
<td>Primary</td>
<td>120</td>
<td>4</td>
</tr>
</tbody>
</table>

Source: Amendment Plan, 2015

Similarly, the following map shows the location/alignment of proposed intra-city roads along with their lengths and widths (RoWs). The following map also shows the roads classifications and phasing plans for their development in the city.

3.5.3.9. Project Area (PA) - K-09- (Bhae Pheru)

Description of Project Area

The area Bounded by Manga Mandi in the North. The area bounded by Chunian Industrial Estate in the West & East. Area bounded by ODP boundary of Bhaepheru.
Chapter 3: PROJECT DESCRIPTION

Figure 3.71: Existing Land Use Map

Existing Builtup Area 2351.58

Proposed Land Use:
The distribution of land uses in terms of residential, industrial, are accounted in the following table, wherein the total area proposed for residential development is around 2797 acres, and the area reserved for Industrial Development is Nil.

Population has increased upto 104406 in 2015 and buildup area 494 acres. Proposed population for 2035 i.e 216758 required 2797 acres area to accommodate the future population.
Figure 3.72: Proposed Land Use for K-09 Site Bhai Pheru

Table 3.39: Proposed land uses for Bhai Pheru

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Land use</th>
<th>Area (Acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Residential</td>
<td>2797</td>
</tr>
<tr>
<td>2</td>
<td>Industrial</td>
<td>Nill</td>
</tr>
<tr>
<td></td>
<td>Existing Builtup</td>
<td>2351</td>
</tr>
<tr>
<td>3</td>
<td>Total</td>
<td>5148</td>
</tr>
</tbody>
</table>

Source: Amendment Plan 2015

Road Network for K-09 Bhai Pheru Site:
The theoretical model of connectivity has also been applied to the existing network within all project sites. The results of the models show that there is essential need for addition and up gradation of road linkages within Bhai Pheru to facilitate the
population projected for the next 20 years. Therefore, the amendment plan suggests a bypass Road for Bhai Pheru City of 10 Km length and 120 ROW:

Table 3.40: Proposed Roads and Right of Ways

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Project Sites</th>
<th>Road Category</th>
<th>Right of Way (ROW)</th>
<th>Length (Kilometers)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bhai Pheru</td>
<td>Primary</td>
<td>120</td>
<td>17</td>
</tr>
</tbody>
</table>

Source: Amendment Plan, 2015

Similarly, the following map shows the location/alignment of proposed intra-city roads along with their lengths and widths (RoWs). The following map also shows the roads classifications and phasing plans for their development in the city.

3.5.3.10. Project Area (PA)-K-10- (Jamber)

Description of Project Area

Boundary of about 4.0 km diameter in the form of Semi Circle around the Jamber in the north, east and south direction.
Figure 3.74: Existing Land Use for K-10 Jamber

Existing Builtup Area 338.41 Acres

Proposed Land Use:
The distribution of land uses in terms of residential, industrial, are accounted in the following table, wherein the total area proposed for residential development is around 441 acres, and no area is reserved for industrial development by keeping in view the existing trend as no demand of industrial development there.

Population has increased upto 32370 in 2015 and buildup area 338 acres.
Chapter 3: PROJECT DESCRIPTION

Table 3.41: Proposed land uses for Jamber

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Land use</th>
<th>Area (Acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Total Project Area</td>
<td>804</td>
</tr>
<tr>
<td>2</td>
<td>Built up</td>
<td>338</td>
</tr>
<tr>
<td>3</td>
<td>Residential</td>
<td>441</td>
</tr>
<tr>
<td>4</td>
<td>Industrial</td>
<td>-</td>
</tr>
</tbody>
</table>

Source: Amendment Plan 2015

Road Network for K-10 Jamber Site:
The theoretical model of connectivity has also been applied to the existing network within all project sites. The results of the models show that there is essential need for
addition and upgradation of road linkages within Jamber to facilitate the population projected for the next 20 years. Therefore, the amendment plan suggests a bypass Road in the East of Jamber City of 10 Km length and 120 ROW:

Table 3.42: Proposed Roads and Right of Ways

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Project Sites</th>
<th>Road Category</th>
<th>Right of Way (ROW)</th>
<th>Length (Kilometers)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Jamber</td>
<td>Primary</td>
<td>120</td>
<td>3</td>
</tr>
</tbody>
</table>

Source: Amendment Plan, 2015

Similarly, the following map shows the location/alignment of proposed intra-city roads along with their lengths and widths (RoWs). The following map also shows the roads classifications and phasing plans for their development in the city.

Figure 3.76: Road Network for K-10 Jamber Site

3.5.3.11. Project Area (PA)-K-11 Jamber Industrial Estate

Description of Project Area

Site is situated at a distance of 67 Km from Lahore, 21 Km away from Chunian and 15.5 Km away from Pattoki. The labour and raw material is mostly used from hinterlands of Jamber Khurad like Hamwali, Shar
Okara and Lahore through N-5. Jamber

Figure 3.77: Existing Land Use for Site k-11 Jamber Industrial Estate

Existing built up Area 97 Acres

Proposed Land Use:
Looking into future needs and industrial growth an industrial estate is proposed in an area of 2028 acres for catering needs of growing population of this area.
Chapter 3: PROJECT DESCRIPTION

Figure 3.78: Proposed Land Use for k-11 Jamber Industrial Estate

Table 3.43: Proposed land uses for Jamber Industrial Estate

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Land use</th>
<th>Area (Acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Residential</td>
<td>Nil</td>
</tr>
<tr>
<td>2</td>
<td>Industrial</td>
<td>2028</td>
</tr>
<tr>
<td>3</td>
<td>Total</td>
<td>2028</td>
</tr>
</tbody>
</table>

Source: Amendment Plan 2015

Road Network for K-11 Jamber Industrial Estate:

Road is also proposed for managing traffic produced by this industrial settlements for the movement of production goods, services and labor. The right of way of these proposed roads are kept 120 and 150 feet which are wide enough to move for heavy traffic. Some existing settlements are also kept in contact for residential colonies of workers.
Chapter 3: PROJECT DESCRIPTION

Table 3.44: Proposed Roads and Right of Ways

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Project Sites</th>
<th>Road Category</th>
<th>Right of Way (ROW)</th>
<th>Length (Kilometers)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Jamber Industrial Estate</td>
<td>Primary</td>
<td>120</td>
<td>3</td>
</tr>
</tbody>
</table>

![Figure 3.79: Road Network for SITE-K-11 (Jamber Industrial Estate)](

3.5.3.12. Project Area (PA)-K-12 (Chunian)

Description of Project Area

Boundary in the form of circle about 6.5 km diameter around the Chunian
Chapter 3: PROJECT DESCRIPTION

Figure 3.80: Existing land use for K-12 Chunian city site

Existing Builtup Area 1663.47 Acres

Proposed Land Use:
The distribution of land uses in terms of residential and industrial are accounted in the following table, wherein the total area proposed for residential development is around 2128 acres, and the area reserved for industrial development accounts to 633 acres. A relatively larger allocation for industrial development in Chunian City is due to existing large scale industries in the area and its positioning as a production center for Lahore Division.
Chapter 3: PROJECT DESCRIPTION

Figure 3.81: Proposed Land use For K-12 Chunian City Site

Table 3.45: Proposed land uses for Tehsil Chunian City

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Land use</th>
<th>Area (Acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Total</td>
<td>3701</td>
</tr>
<tr>
<td>2</td>
<td>Builtup</td>
<td>1663</td>
</tr>
<tr>
<td>3</td>
<td>Residential</td>
<td>2128</td>
</tr>
<tr>
<td>4</td>
<td>Industrial</td>
<td>336</td>
</tr>
</tbody>
</table>

Source: Amendment Plan 2015

Road Network for K-12 Chunian City Site:

The theoretical model of connectivity has also been applied to the existing network within all project sites. The results of the models show that there is essential need for
addition and up gradation of road linkages within Chunian City to facilitate the population projected for the next 20 years. Therefore, the amendment plan suggests a ring road around Chunian City of 17 Km length having 120 feet ROW:

Table 3.46: Proposed Roads and Right of Ways of Chunian City

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Project Sites</th>
<th>Road Category</th>
<th>Right of Way (ROW)</th>
<th>Length (Kilometers)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Chunian</td>
<td>Primary</td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

Source: Amendment Plan, 2015

Similarly, the following map shows the location/alignment of proposed intra-city roads along with their lengths and widths (RoWs). The following map also shows the roads classifications and phasing plans for their development in the city.
3.5.3.13. Project Area (PA)-K-13 (AllahAbad)

Description of Project Area

Boundary in the form of circle having diameter about 3.75 km around Allahabad.
Figure 3.83: Existing Land uses for K-13 AllahAbad

Existing Builtup Area

553.46

Proposed Landuses:
The distribution of land uses in terms of residential, industrial, are accounted in the following table, wherein the total area proposed for residential development is around 1034 acres with industrial development 20 acres.

Population has increased up to 62629 in 2015 and buildup area 553 acres. Proposed population for 2035 i.e 107539 required 1034 Acres area to accommodate the future population. By considering this, to achieve the compact development, following table is designed to show the existing and future need for extension of the area specifically residential activity.
Chapter 3: PROJECT DESCRIPTION

Table 3.47: Proposed land uses for Allahabad

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Land use</th>
<th>Area (Acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Total Project Area</td>
<td>1603</td>
</tr>
<tr>
<td></td>
<td>Built up Area</td>
<td>553</td>
</tr>
<tr>
<td>1</td>
<td>Proposed Residential</td>
<td>1034</td>
</tr>
<tr>
<td>2</td>
<td>Proposed Industrial</td>
<td>20</td>
</tr>
</tbody>
</table>

Source: Amendment Plan 2015

Figure 3.84: Proposed Land Use for K-13 AllahAbad

Road Network for k-13 AllahAbad

The theoretical model of connectivity has also been applied to the existing network within all project sites. The results of the models show that there is essential need for addition and up gradation of road linkages within Allahabad City to facilitate the
population projected for the next 20 years. Therefore, the amendment plan suggests a ring road around Allahabad City of 12 Km length having 120 feet ROW:

Table 3.48: Proposed Roads and Right of Ways of Chunian City

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Project Sites</th>
<th>Road Category</th>
<th>Right of Way (ROW)</th>
<th>Length (Kilometers)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Allahabad</td>
<td>Primary</td>
<td>120</td>
<td>12</td>
</tr>
</tbody>
</table>

Source: Amendment Plan, 2015

Similarly, the following map shows the location/alignment of proposed intra-city roads along with their lengths and widths (RoWs). The following map also shows the roads classifications and phasing plans for their development in the city.
3.5.3.14. Project Area (PA)-K-14 (Kangan Pur)

Description of Project Area

Boundary of about 2.0 km diameter in the form of Semi Circle around the Kanganpur in the north, west and south direction.

Figure 3.86: Road Network Map for k-14 Kangan Pur

Existing Builtup Area

307.73 Acres

Proposed Land use:

the distribution of land uses in terms of residential, industrial, are accounted in the following table, wherein the total area proposed for residential development is around 510 acres, and no area is reserved for industrial development by keeping in view the existing trend as no demand of industrial development there.
Population has increased up to 16519 in 2015 and buildup area 307 acres. Proposed population for 2035 i.e 27709 required 510 Acres area to accommodate the future population.

Table 3.49: Proposed land uses for Kangunpur

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Land use</th>
<th>Area (Acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Residential</td>
<td>510</td>
</tr>
<tr>
<td></td>
<td>Built up</td>
<td>307</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>815</td>
</tr>
</tbody>
</table>

Source: Amendment Plan 2015
Road Network for K-14 Kangan Pur Site

The theoretical model of connectivity has also been applied to the existing network within all project sites. The results of the models show that there is essential need for addition and up gradation of road linkages within Kangunpur City to facilitate the population projected for the next 20 years. Therefore, the amendment plan suggests a ring road bypass around Kangunpur City of 06 Km length having 120 feet ROW:

Table 3.50: Proposed Roads and Right of Ways of Kangunpur City

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Project Sites</th>
<th>Road Category</th>
<th>Right of Way (ROW)</th>
<th>Length (Kilometers)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Kangunpur</td>
<td>Primary</td>
<td>120</td>
<td>06</td>
</tr>
</tbody>
</table>

Source: Amendment Plan, 2015

Similarly, the following map shows the location/alignment of proposed intra-city roads along with their lengths and widths (RoWs). The following map also shows the roads classifications and phasing plans for their development in the city.
3.5.3.15. Project Area (PA)-K-15 (Pattoki)

Description of Project Area

Boundary in the form of circle having diameter about 6.5 km around Pattoki.
Chapter 3: PROJECT DESCRIPTION

Figure 3.89: Existing Land Uses for K-15 Pattoki Site

Existing Built up Area 1560.38 Acres

Proposed Land Use

The distribution of land uses in terms of residential and industrial are accounted in the following table, wherein the total area proposed for residential development is around 2113 acres, and the area reserved for industrial development accounts to 275 acres. A relatively larger allocation for industrial development in Pattoki City is due to existing large scale industries in the area and its positioning as a production center for Lahore Division.
Chapter 3: PROJECT DESCRIPTION

The area allocations made above have been shown in the map, where most of the residential development is proposed contiguous to the existing built-up area in almost all directions along radial roads but in a circular and compact form.

Road Network for K-15 Pattoki Site:
The theoretical model of connectivity has also been applied to the existing network within all project sites. The results of the models show that there is essential need for addition and up gradation of road linkages within Pattoki City to facilitate the population projected for the next 20 years. A ring road is proposed around Pattoki.
City of 17 Km length. Moreover another inter City of 80 feet Road is proposed connecting Pattoki Raiwind Road to Multan Road:

Table 3.52: Proposed Roads and Right of Ways

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Project Sites</th>
<th>Road Category</th>
<th>Right of Way (ROW)</th>
<th>Length (Kilometers)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pattoki</td>
<td>Primary</td>
<td>120</td>
<td>17</td>
</tr>
<tr>
<td>2</td>
<td>Pattoki</td>
<td>Intra City</td>
<td>80</td>
<td>---</td>
</tr>
</tbody>
</table>

Source: Amendment Plan, 2015

Similarly, the following map shows the location/alignment of proposed intra-city roads along with their lengths and widths (RoWs). The following map also shows the roads classifications and phasing plans for their development in the city.

Figure 3.91: Roads Network Map for SITE-K-15 (Pattoki City)

3.5.3.16. Project Area Site-K-16 (Talwandi)

Description of Project Area

Boundary in the form of circle having diameter about 2.3 km around Talwandi.
Figure 3.92: Existing Land use for K-16 Talwandi Site

Existing Built up Area 159.75 Acres

Proposed Land uses:

The distribution of land uses in terms of residential, industrial, are accounted in the following table, wherein the total area proposed for residential development is around 523 acres, and no area is reserved for industrial development by keeping in view the existing trend as no demand of industrial development there.

Population has increased up to 20138 in 2015 and buildup area 189 acres. Proposed population for 2035 i.e 34579 required 523 Acres area to accommodate the future population. By considering this, to achieve the compact development,
following table is designed to show the existing and future need for extension of the area specifically residential activity.

Table 3.53: Proposed Land Uses for Talwandi

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Land use</th>
<th>Area (Acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Total Project Area</td>
<td>669</td>
</tr>
<tr>
<td>2</td>
<td>Builtup</td>
<td>189</td>
</tr>
<tr>
<td>3</td>
<td>Residential Proposed</td>
<td>523</td>
</tr>
</tbody>
</table>

Source: Amendment Plan 2015

Figure 3.93: Proposed Land use for K-16 Talwandi Site

Roads Network for k-16 Talwandi Site:
Chapter 3: PROJECT DESCRIPTION

The theoretical model of connectivity has also been applied to the existing network within all project sites. The results of the models show that there is essential need for addition and upgradation of road linkages within Talwandi City to facilitate the population projected for the next 20 years. Therefore, the amendment plan suggests a ring road around Talwandi City of 06 Km length having 120 feet ROW:

Table 3.54: Proposed Roads and Right of Ways of Talwandi

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Project Sites</th>
<th>Road Category</th>
<th>Right of Way (ROW)</th>
<th>Length (Kilometers)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Talwandi</td>
<td>Primary</td>
<td>120</td>
<td>07</td>
</tr>
</tbody>
</table>

Source: Amendment Plan, 2015

Similarly, the following map shows the location/alignment of proposed intra-city roads along with their lengths and widths (RoWs). The following map also shows the roads classifications and phasing plans for their development in the city.

Figure 3.94: Road Network Map for K-16 Talwandi Site
3.5.4. DISTRICT SHEIKHUPURA

3.5.4.1. PA-SKP-1(Sheikhupura City)

Description of Project Area

In the North, area boundary align with the Lahore Islamabad Motorway M-2,

In the East, aligns with Tehsil boundary.

In the West, aligns with Kurlkey drain upto Jhaamkay settlement on both sides of Sargodha road.

In the South, area running parallel along Sheikhupura Bypass Road.

Figure 3.95: Existing Land Uses for PA-SKP-1(Sheikhupura City)

Existing Built Up Area 7300 Acres

Proposed Land Uses

The distribution of land uses in terms of residential, industrial, and special development zones are accounted in the following table, wherein the total area proposed for residential development is around 13725 acres, and the area reserved for industrial development accounts to 4643 acres. A relatively larger allocation for
industrial development in Sheikhupura City is due to existing large scale industries in the area and its positioning as a production center for Lahore Division. Moreover, the current government is pursuing hard establish special economic development zone to attract Chinese investment. Therefore, a large special development zone—spanning over 3890 acres of land has been also planned in the Sheikhupura. The amendment plan also accommodates the special development zone in its planning area (Project Site 01, Sheikhupura City).

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Land use</th>
<th>Area (Acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Residential</td>
<td>13725</td>
</tr>
<tr>
<td>2</td>
<td>Industrial</td>
<td>4643</td>
</tr>
<tr>
<td>3</td>
<td>Special Development Zone</td>
<td>3890.58</td>
</tr>
<tr>
<td>4</td>
<td>Builtup</td>
<td>7300</td>
</tr>
<tr>
<td>6</td>
<td>Others</td>
<td>2458</td>
</tr>
<tr>
<td>5</td>
<td>Total</td>
<td>32016</td>
</tr>
</tbody>
</table>

Table 3.55: Proposed land uses for Sheikhupura City

The area allocations made above have been shown in the proceeding map, where most of the residential development is proposed contiguous to the existing built-up area in almost all directions along radial roads but in a circular and compact form. Industrial land uses area proposed along the Lahore Sheikhupura Road keeping in existing trend of industries and the coexistence of roads and railways links around industrial zone. The special development zone is proposed in the north east direction of Sheikhupura City between the Railway lines and Lahore Islamabad Motorway (M-2).
Figure 3.96: Proposed Land Uses for PA-SKP-1(Sheikhupura City)

Roads Network for PA-SKP-1(Sheikhupura City):
The theoretical model of connectivity has also been applied to the existing network within all project sites. The results of the models shows that there is essential need for addition and up gradation of road linkages within Sheikhupura City to facilitate the population projected for the next 20 years. Therefore, the amendment plan suggests a number intra city roads as mentioned in the following table:
Table 3.56: Proposed Roads and Right of Ways

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Road Category</th>
<th>Right of Way (ROW)</th>
<th>Length (Kilometers)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Primary</td>
<td>-----------</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>Secondary</td>
<td>-----------</td>
<td>6</td>
</tr>
</tbody>
</table>

Source: Amendment Plan, 2015

Similarly, the following map shows the location/alignment of proposed intra-city roads along with their lengths and widths (RoWs). The following map also shows the roads classifications and phasing plans for their development in the city.

![Map of proposed roads and right of ways](image_url)

Figure 3.97: Roads Network for PA-SKP-1 (Sheikhupura City):
3.5.4.2. **Project Area (PA)-SKP-2- (Muridke)**

Description of Project Area

In the North, area bounded by GT road & railway line near PSO rachna petrol station.

In the South, area bounded by Lahore bypass near NHA office (near KSK Campus)

In the West, area bounded by DeghNullah & Canal and Muridke Distributory & Village Kot Hanif.

In the East, area bounded by Railway line, Chak no.44 road and Khudaki Basti Scheme.

Figure 3.98: Existing Land uses for SKP-2- (Muridke)

Existing Built up Area 5614 Acres
Proposed Land uses:

the distribution of land uses in terms of residential, industrial, are accounted in the following table, wherein the total area proposed for residential development is around 5488 acres, and the area reserved for Industrial development accounts to 3300 acres. A relatively larger allocation for industrial development in Muridke is due to existing large scale industries in the area and its positioning as a production center for Lahore Division.

Population has increased up to 219859 in 2015 and buildup area 5614 acres. Proposed population for 2035 i.e. 486391 required 10066 Acres area to accommodate the future population. By considering this, to achieve the compact development, following table is designed to show the existing and future need for extension of the area specifically for residential zone.

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Land use</th>
<th>Area (Acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Residential</td>
<td>4096</td>
</tr>
<tr>
<td>2</td>
<td>Industrial</td>
<td>3600</td>
</tr>
<tr>
<td>3</td>
<td>Builtup</td>
<td>5614</td>
</tr>
<tr>
<td>4</td>
<td>Others</td>
<td>3647</td>
</tr>
<tr>
<td>5</td>
<td>Total</td>
<td>16957</td>
</tr>
</tbody>
</table>

Source: Amendment Plan 2015
Road Network for Skp-2-Muridke:

The result of the theoretical models shows that there is essential need for addition and up gradation of road linkages within Muridke City to facilitate the population projected for the next 20 years. Therefore, the amendment plan suggests a number of intra city roads as mentioned in the following table:

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Road Category</th>
<th>Right of Way (ROW)</th>
<th>Length (Kilometers)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Primary</td>
<td>120</td>
<td>39</td>
</tr>
<tr>
<td>2</td>
<td>Secondary</td>
<td>80</td>
<td>15</td>
</tr>
</tbody>
</table>

Table 3.58: Proposed Roads and Right of Ways

Source: Amendment Plan, 2015
Similarly, the following map shows the location/alignment of proposed intra-city roads along with their lengths and widths (RoWs). The following map also shows the roads classifications and phasing plans for their development in the city.

![Figure 3.100: Roads Network map for Skp-2-Muridke](image)

3.5.4.3. Project Area (PA)-SKP-3 (Ferozwala)

Description of Project Area

In the North, area bounded from Lahore Sheikhupura Road to include Dera Major Riaz, Karianwala crossing kotpindi das road towards Nabipur.

In the South, area bounded from Lahore Shiekhupura Road to include TibbaRehmat Khan, Sarai and Mominpura.

In the West, area bounded Khanpur canal near Khanpur village.
In the East, area bounded from Lahore Islamabad Motorway M-2.

Figure 3.101: Existing Land uses for Skp-03-Ferzwala

Existing Built up area 2591

Proposed Land Uses:

To achieve proper zoning as per trend observed by survey and site situation and by considering the potential of development in subject area, All the built up area and empty pockets in it along LHR-Muridke road is proposed for Residential & Industrial keeping intact the existing Industrial Units.
Figure 3.102: Proposed Land Uses for skp-3-Ferozwala

Road Network for Skp-3-Ferozwala:

The result of the theoretical models shows that there is essential need for addition and upgradation of road linkages within Ferozwala to facilitate the population projected for the next 20 years. Therefore, the amendment plan suggests a number of intra-city roads as mentioned in the following table:

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Road Category</th>
<th>Right of Way (ROW)</th>
<th>Length (Kilometers)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Primary</td>
<td>120</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>Secondary</td>
<td>80</td>
<td>27</td>
</tr>
</tbody>
</table>

Source: Amendment Plan, 2015
Similarly, the following map shows the location/alignment of proposed intra-city roads along with their lengths and widths (RoWs). The following map also shows the roads classifications and phasing plans for their development in the city.

![Figure 3.103: Roads Network for Skp-3-Ferozwala](image)

3.5.4.4. Project Area (PA)-SKP-4 (Farooqabad)

Description of Project Area

In the North, area bounded from Lahore Sargodha road towards Mureedke settlement.

In the South, area bounded from Lahore Sargodha road to include NokharNawan settlement.

In the West, area bounded by Qadarabad Balloki link Canal.

In the East, area running parallel to the drain and crossing Lahore Sargodha road.
Chapter 3: PROJECT DESCRIPTION

Figure 3.104: Existing Land Uses for Skp-4-FarooqAbad

Existing Built up Area 1430 Acres

Proposed Land Uses:

The distribution of land uses in terms of residential, industrial, are accounted in the following table, wherein the total area proposed for residential development is around 1800 acres, and no area is reserved for industrial development by keeping in view the existing trend as no industry is present in Faqooqabad.

Population has increased up to 99493 in 2015 and buildup area 1430 acres. Proposed population for 2035 i.e 183929 required 1700 Acres area to accommodate the future population. By considering this, to achieve the compact development, following table is designed to show the existing and future need for extension of the area specifically for residential zone.
Table 3.60: Proposed land uses for Farooqabad

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Land use</th>
<th>Area (Acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Total Project Area</td>
<td>3231</td>
</tr>
<tr>
<td>2</td>
<td>Residential Proposed</td>
<td>1470</td>
</tr>
<tr>
<td>3</td>
<td>Built up Proposed</td>
<td>1430</td>
</tr>
<tr>
<td>4</td>
<td>Others</td>
<td>331</td>
</tr>
</tbody>
</table>

Source: Amendment Plan 2015

Figure 3.105: Proposed Land Uses for Skp-4-Farooqabad

Roads Network for Skp-4-Farooqabad:

The result of the theoretical models shows that there is essential need for addition and up gradation of road linkages within Farooqabad to facilitate the population
Amendment in Master Plan for Lahore Division (The Project)
Environmental Impact Assessment (EIA) Report

Chapter 3: PROJECT DESCRIPTION

projected for the next 20 years. Therefore, the amendment plan suggests a number intra city roads as mentioned in the following table:

Table 3.61: Proposed Roads and Right of Ways

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Road Category</th>
<th>Right of Way (ROW)</th>
<th>Length (Kilometers)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Primary</td>
<td>120</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>Secondary</td>
<td>80</td>
<td>4</td>
</tr>
</tbody>
</table>

Source: Amendment Plan, 2015

Similarly, the following map shows the location/alignment of proposed intra-city roads along with their lengths and widths (RoWs). The following map also shows the roads classifications and phasing plans for their development in the city.

![Figure 3.106: Roads Network for Skp-3-Farooqabad](image)
3.5.4.5. Project Area (PA)-SKP-5 (Narangmandi)

Description of Project Area

In the North, area bounded by Manawala settlement to Mayoun da Dera along NarowalMuridke road.

In the SouthWest, area running parallel to Kala KhataiNarangmandiRoad from Manawala settlement to Khun.

In the East, area bounded from Khun to Younas Park.

![Figure 3.107: Existing land uses for skp-5-Narangmandi](image)

Existing Builtup Area

1100 Acres
Proposed Land uses:
the distribution of land uses in terms of residential, industrial, are accounted in the following table, wherein the total area proposed for residential development is around 1540 acres. Population has increased upto57467 in 2015 and built up area 1100acres .Proposed population for 2035 i.e. 117255required 1200Acres area to accommodate the future population. By considering this , to achieve the compact development, following table is designed to show the existing and future need for extension of the area specifically for residential zone.

Table 3.62: Proposed land uses for Narangmani

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Land use</th>
<th>Area (Acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Residential Proposed</td>
<td>1540</td>
</tr>
<tr>
<td></td>
<td>Builtup</td>
<td>1100</td>
</tr>
<tr>
<td>3</td>
<td>Total Project Area</td>
<td>2634</td>
</tr>
</tbody>
</table>

Source: Amendment Plan 2015

Figure 3.108: Proposed land use for skp-5 Narang Mandi site
Roads Network for SKP-5 Narangmandi:

The result of the theoretical models shows that there is essential need for addition and upgradation of road linkages within Narangmandi to facilitate the population projected for the next 20 years. Therefore, the amendment plan suggests a number of intra-city roads as mentioned in the following table:

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Road Category</th>
<th>Right of Way (ROW)</th>
<th>Length (Kilometers)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Primary</td>
<td>120</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>Secondary</td>
<td>80</td>
<td>3</td>
</tr>
</tbody>
</table>

Source: Amendment Plan, 2015

Similarly, the following map shows the location/alignment of proposed intra-city roads along with their lengths and widths (RoWs). The following map also shows the roads classifications and phasing plans for their development in the city.

Figure 3.109: Proposed Road Network for SKP-5 Narang Mandi
3.5.4.6. Project Area (PA)-SKP-6- (Sharqpur)

Description of Project Area

In the North West, area bounded by naibhini towards distributary approximately 1 km loop running parallel Jaranwala road in Sharqpur.

In the South East, area bounded by Hafiz sidhi settlement and Ghareebaabad settlement approximately 1 km loop running parallel Jaranwala road in Sharqpur.

Figure 3.110: Existing Land for Skp-6-Sharaqpur

Existing Built up Area 435 Acres
Proposed Land uses:

The distribution of land uses in terms of residential, industrial, are accounted in the following table, wherein the total area proposed for residential development is around 732 acres, and no area is reserved for industrial development by keeping in view the existing trend as no trend industrial development is noted there.

Population has increased up to 42043 in 2015 and buildup area 435 acres. Proposed population for 2035 i.e. 67297 required 732 Acres area to accommodate the future population. By considering this, to achieve the compact development, following table is designed to show the existing and future need for extension of the area specifically for residential zone.

Table 3.64: Proposed land uses for Farooqabad

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Land use</th>
<th>Area (Acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Residential</td>
<td>732</td>
</tr>
<tr>
<td>2</td>
<td>Built up</td>
<td>435</td>
</tr>
<tr>
<td>3</td>
<td>Others</td>
<td>129</td>
</tr>
<tr>
<td>4</td>
<td>Total Project Area</td>
<td>1296</td>
</tr>
</tbody>
</table>

Source: Amendment Plan 2015
Figure 3.111: Proposed land used for skp-06 Sharqpur

Roads Network for Skp-6-Sharaqpur:
In case of Sharaqpur, ODP has not been expired, it has a life up to 2035. The development in Sharaqpur is controlled other than the existence of orchards that may be converted into residential zone in the next 20 years. So no need to propose new road in Sharaqpur.

3.5.4.7. **Project Area (PA)-SKP-7 (Safdarabad)**

Description of Project Area
Area bounded by approximately 1.5 km in circular form from Railway Station, Safdarabad.
Existing Builtup Area 240 Acres

Proposed Land uses:
The distribution of land uses in terms of residential, industrial, are accounted in the following table, wherein the total area proposed for residential development is around 530 acres.

Population has increased upto 22070 in 2015 and buildup area 240 acres. Proposed population for 2035 i.e 48825 required 535 Acres area to accommodate the future population. By considering this, to achieve the compact development, following table
is designed to show the existing and future need for extension of the area specifically for residential zone.

Table 3.65: Proposed land uses for Muridke

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Land use</th>
<th>Area (Acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Builtup</td>
<td>240</td>
</tr>
<tr>
<td>2</td>
<td>Residential</td>
<td>530</td>
</tr>
<tr>
<td>3</td>
<td>Total Project Area</td>
<td>769</td>
</tr>
</tbody>
</table>

Source: Amendment Plan 2015
Roads Network for Skp-6-Safdarabad:
The result of the theoretical models shows that there is essential need for addition and upgradation of road linkages within Safdarabad to facilitate the population projected for the next 20 years. Therefore, the amendment plan suggests a number of intra-city roads as mentioned in the following table:

Table 3.66: Proposed Roads and Right of Ways

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Road Category</th>
<th>Right of Way (ROW)</th>
<th>Length (Kilometers)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Primary</td>
<td>120</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Secondary</td>
<td>80</td>
<td>0</td>
</tr>
</tbody>
</table>

Source: Amendment Plan, 2015

Similarly, the following map shows the location/alignment of proposed intra-city roads along with their lengths and widths (RoWs). The following map also shows the roads classifications and phasing plans for their development in the city.
3.5.4.8. Project Area (PA)-SKP-8(Bhiki)

Description of Project Area

Area running parallel about 1 km in depth from Kudalthi More to QadarabadBaloki Link Canal along Lahore Sheikhupura- Faisalabad Road on both sides.

![Map of Project Area](image)

Existing built up Area

349.58 Acres

Proposed Land uses:

The distribution of land uses in terms of residential, industrial, are accounted in the following table, wherein the total area proposed for residential development in Bhiki
is around 1480 acres, and the area reserved for Industrial development accounts to 4788 acres.

Population has increased up to 47752 in 2015 and buildup area 349 acres population for 2035 i.e. 105641 required 1157.7 Acres area to accommodate the future population in case of Bhiki Settlement. In the same way Population has increased up to 30210 in 2015 and buildup area 350 acres. Proposed population for 2035 i.e 105641 51471 required 425.22 Acres area to accommodate the future population. By considering this to achieve the compact development, following table is designed to show the existing and future need for extension of the area including residential and industrial area.

Table 3.67: Proposed land uses for Bkihi

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Land use</th>
<th>Area (Acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Residential</td>
<td>1480</td>
</tr>
<tr>
<td>2</td>
<td>Industrial</td>
<td>4788</td>
</tr>
<tr>
<td></td>
<td>Builtup</td>
<td>349</td>
</tr>
<tr>
<td></td>
<td>Others</td>
<td>1033</td>
</tr>
<tr>
<td>3</td>
<td>Total Project Area</td>
<td>7650</td>
</tr>
</tbody>
</table>

Source: Amendment Plan 2015
Chapter 3: PROJECT DESCRIPTION

Figure 3.116: Proposed land uses for skp-8-Bhikhi

Roads Network for skp-8- Bhikki

The result of the theoretical models shows that there is essential need for addition and upgradation of road linkages within Bkihi and Kharianwala to facilitate the population projected for the next 20 years. Therefore, the amendment plan suggests a number intra city roads as mentioned in the following table:

Table 3.68: Proposed Roads and Right of Ways

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Road Category</th>
<th>Right of Way (ROW)</th>
<th>Length (Kilometers)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Primary</td>
<td>120</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>Secondary</td>
<td>80</td>
<td>20</td>
</tr>
</tbody>
</table>

Source: Amendment Plan, 2015
Similarly, the following map shows the location/alignment of proposed intra-city roads along with their lengths and widths (RoWs). The following map also shows the roads classifications and phasing plans for their development in the city.

![Figure 3.117: Roads Network for skp-8-Bhikki and Kharian.](image)

3.5.4.9. **Project Area (PA)-SKP-9 (Ferozwatwan)**

Description of Project Area

Area running parallel approximately 1.5 km in depth from QadarabadBalloki Link Canal to Taali Chak along Lahore Sheikhpura- Faisalabad Road on both sides.
Existing builtup area 570 Acres

Proposed land uses:

the distribution of land uses in terms of residential, industrial, are accounted in the following table, wherein the total area proposed for residential development is around 1742 acres, and the area reserved for Industrial development accounts to 2237 acres. A relatively larger allocation for industrial development in Ferozwatwan is due to existing large scale industries in the area and its positioning as a production center for Lahore Division

Population has increased upto 64891 in 2015 and buildup area 570 acres . Proposed population for 2035 i.e 143557 required 1573.3 Acres area to accommodate the future population. By considering this , to achieve the compact development, following table is designed to show the existing and future need for extension of the area including residential and industrial zone.
Chapter 3: PROJECT DESCRIPTION

Table 3.69: Proposed land uses for Ferozwatwan

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Land use</th>
<th>Area (Acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Residential</td>
<td>1742</td>
</tr>
<tr>
<td>2</td>
<td>Industrial</td>
<td>2237</td>
</tr>
<tr>
<td>3</td>
<td>Builtup</td>
<td>570</td>
</tr>
<tr>
<td>4</td>
<td>Others</td>
<td>1094</td>
</tr>
<tr>
<td>5</td>
<td>Total project Area</td>
<td>5643</td>
</tr>
</tbody>
</table>

Source: Amendment Plan 2015

Figure 3.119: Proposed land uses for skp-9-Ferozwatwan

Roads Network for skp-9- Ferozwatwan:

The result of the theoretical models shows that there is essential need for addition and up gradation of road linkages within Ferozwatwan to facilitate the population projected for the next 20 years. Therefore, the amendment plan suggests a number intra city roads as mentioned in the following table:
Table 3.70: Proposed Roads and Right of Ways

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Road Category</th>
<th>Right of Way (ROW)</th>
<th>Length (Kilometers)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Primary</td>
<td>120</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>Secondary</td>
<td>80</td>
<td>14</td>
</tr>
</tbody>
</table>

Source: Amendment Plan, 2015

Similarly, the following map shows the location/alignment of proposed intra-city roads along with their lengths and widths (RoWs). The following map also shows the roads classifications and phasing plans for their development in the city.

Figure 3.120: Roads Network for Skp-9-Ferozwatwan

3.5.4.10. Project Area (PA)-SPA-10 (Manawala)

Description of Project Area

In the North, area running parallel about 1 km in depth along Lahore Sheikhupura Faisalabad Road.

In the South, area bounded by Saimnullah.
In the West, area bounded by Iqbal Nagar to Saimnullah road.

In the East, area bounded by briks road and Saimnullah.

Figure 3.121: Existing land uses for skp-10-Manawala

Existing builtup area 600 Acres

Proposed land uses:

the distribution of land uses in terms of residential, industrial, are accounted in the following table, wherein the total area proposed for residential development is around 1166 acres, and no area is reserved for industrial development by keeping in view the existing trend as no demand of industrial development there.

Population has increased upto 50205 in 2015 and buildup area 600 acres . Proposed population for 2035 i.e 111067 required 1166 Acres area to accommodate the future population. By considering this , to achieve the compact development,
following table is designed to show the existing and future need for extension of the area specifically residential activity.

Table 3.71: Proposed land uses for Manawala

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Land use</th>
<th>Area (Acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Residential</td>
<td>1230</td>
</tr>
<tr>
<td></td>
<td>Builtup</td>
<td>600</td>
</tr>
<tr>
<td>2</td>
<td>Industrial</td>
<td>Nil</td>
</tr>
<tr>
<td>3</td>
<td>Total Project Area</td>
<td>1831</td>
</tr>
</tbody>
</table>

Source: Amendment Plan 2015

Figure 3.122: Proposed Land uses for skp-10 Manawala

Roads Network for Skp-10-Manawala:
Chapter 3: PROJECT DESCRIPTION

The result of the theoretical models shows that there is essential need for addition and upgradation of road linkages within Manawala to facilitate the population projected for the next 20 years. Therefore, the amendment plan suggests a number of intra-city roads as mentioned in the following table:

Table 3.72: Proposed Roads and Right of Ways

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Road Category</th>
<th>Right of Way (ROW)</th>
<th>Length (Kilometers)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Primary</td>
<td>120</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>Secondary</td>
<td>80</td>
<td>8</td>
</tr>
</tbody>
</table>

Source: Amendment Plan, 2015

Similarly, the following map shows the location/alignment of proposed intra-city roads along with their lengths and widths (RoWs). The following map also shows the roads classifications and phasing plans for their development in the city.

Figure 3.123: Roads Network for skp-10-Manawala
3.5.4.11. Project Area (PA)-SKP-11 (Khanqah Dogran)

Description of Project Area

The area is bounded about 1 km all around from the center of Khanqah Dogran.

![Map of Existing Land uses for Skp-11-Khanqah Dogran](image)

Figure 3.124: Existing Land uses for Skp-11-Khanqah Dogran

Existing Builtup Area 420.63 Acres

Proposed Land uses:

The distribution of land uses in terms of residential, industrial, are accounted in the following table, wherein the total area proposed for residential development is around 831 acres, and the area reserved for Industrial development accounts to 153 acres. A relatively larger allocation for residential development in Khanqah Dogran is due to existence of small settlements in the area.

Population has increased up to 46509 in 2015 and buildup area 420 acres. Proposed population for 2035 i.e 90071 required 871 acres area to accommodate...
the future population. By considering this, to achieve the compact development, following table is designed to show the existing and future need for extension of the area including residential and industrial zone.

Table 3.73: Proposed land uses for Khanqa Dogran

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Land use</th>
<th>Area (Acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Residential</td>
<td>831</td>
</tr>
<tr>
<td>2</td>
<td>Industrial</td>
<td>153</td>
</tr>
<tr>
<td>3</td>
<td>Builtup</td>
<td>420</td>
</tr>
<tr>
<td>4</td>
<td>Others</td>
<td>35</td>
</tr>
<tr>
<td>3</td>
<td>Total Project Area</td>
<td>1439</td>
</tr>
</tbody>
</table>

Source: Amendment Plan 2015

Figure 3.125: Proposed Land Uses for Skp-11-Khanqah Dogran

Road Network for Skp-11-Khanqah Dogran:

The result of the theoretical models shows that there is essential need for addition and up gradation of road linkages within Khanqa Dogran to facilitate the population
projected for the next 20 years. Therefore, the amendment plan suggests a number of intra-city roads as mentioned in the following table:

Table 3.74: Proposed Roads and Right of Ways

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Road Category</th>
<th>Right of Way (ROW)</th>
<th>Length (Kilometers)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Primary</td>
<td>120</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>Secondary</td>
<td>80</td>
<td>2</td>
</tr>
</tbody>
</table>

Source: Amendment Plan, 2015

Similarly, the following map shows the location/alignment of proposed intra-city roads along with their lengths and widths (RoWs). The following map also shows the roads classifications and phasing plans for their development in the city.

Figure 3.126: Roads Network for Skp-11-Khanqah Dogran
3.5.4.12. Project Area (PA)-SKP-12 (JandialaSher Khan)

Description of Project Area

The area running parallel about 0.6 km in depth along JandialaRoad on both sides in Jandiala Sher Khan.

![Figure 3.127: Existing Land uses for skp-12-Jandiala-Sherkhan](image)

Existing Builtup Area 250 Acres

Proposed Project Area Master Plan

The distribution of land uses in terms of residential, industrial, are accounted in the following table, wherein the total area proposed for residential development is around 415 acres, and no area is reserved for industrial development by keeping in view the existing trend as no demand of industrial development there.
Population has increased upto 20277 in 2015 and buildup area 250 acres. Proposed population for 2035 i.e 44859 required 485 Acres area to accommodate the future population. By considering this, to achieve the compact development, following table is designed to show the existing and future need for extension of the area specifically residential activity.

Table 3.75: Proposed land uses for Jandiala Sher Khan

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Land use</th>
<th>Area (Acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Residential</td>
<td>415</td>
</tr>
<tr>
<td>2</td>
<td>Builtup</td>
<td>250</td>
</tr>
<tr>
<td>3</td>
<td>Total Project Area</td>
<td>739</td>
</tr>
</tbody>
</table>

Source: Amendment Plan 2015

Figure 3.128: Proposed land uses for skp-12 Jandiala Sher Khan

Roads Network for skp-13-Jandila Sher Khan:

The result of the theoretical models shows that there is essential need for addition and up gradation of road linkages within Jandiala Sher Khan to facilitate the
population projected for the next 20 years. Therefore, the amendment plan suggests a number intra city roads as mentioned in the following table:

Table 3.76: Proposed Roads and Right of Ways

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Road Category</th>
<th>Right of Way (ROW)</th>
<th>Length (Kilometers)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Primary</td>
<td>120</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>Secondary</td>
<td>80</td>
<td>4</td>
</tr>
</tbody>
</table>

Source: Amendment Plan, 2015

Similarly, the following map shows the location/alignment of proposed intra-city roads along with their lengths and widths (RoWs). The following map also shows the roads classifications and phasing plans for their development in the city.

Figure 3.129: Roads Network for skp-12-Jandiala Sher Khan

3.5.4.13. Project Area (PA)-SKP-13 (Jhabran)

Description of Project Area

Area running parallel about 1 km in depth along both sides of Hafizabad road from drain to kaakargil road crossing in Jhabran.
Chapter 3: PROJECT DESCRIPTION

Figure 3.130: Existing Land uses for skp-13-Jabran

Existing Built up Area 225 Acres

Proposed Project Area Master Plan

The distribution of land uses in terms of residential, industrial, are accounted in the following table, wherein the total area proposed for residential development is around 1011 acres, and no area is reserved for industrial development by keeping in view the existing trend as no demand of industrial development there.

Population has increased upto 39509 in 2015 and buildup area 225 acres. Proposed population for 2035 i.e 87406 required 1011 Acres area to accommodate the future population. By considering this, to achieve the compact development, following table is designed to show the existing and future need for extension of the area specifically residential activity.
Chapter 3: PROJECT DESCRIPTION

Table 3.77: Proposed land uses for Ferozawatwan

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Land use</th>
<th>Area (Acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Residential Proposed</td>
<td>700</td>
</tr>
<tr>
<td>2</td>
<td>Builtup Area</td>
<td>225</td>
</tr>
<tr>
<td>3</td>
<td>Others</td>
<td>86</td>
</tr>
<tr>
<td>4</td>
<td>Total Project Area</td>
<td>1011</td>
</tr>
</tbody>
</table>

Source: Amendment Plan 2015

Figure 3.131: Proposed Land uses for skp-13-Jhabran

Roads Network for skp-13-Jhabran:

The result of the theoretical models shows that there is essential need for addition and upgradation of road linkages within Jabran to facilitate the population projected for the next 20 years. Therefore, the amendment plan suggests a number intra city roads as mentioned in the following table:

Table 3.78: Proposed Roads and Right of Ways

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Road Category</th>
<th>Right of Way (ROW)</th>
<th>Length (Kilometers)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Primary</td>
<td>120</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>Secondary</td>
<td>80</td>
<td>3</td>
</tr>
</tbody>
</table>

Source: Amendment Plan, 2015
Similarly, the following map shows the location/alignment of proposed intra-city roads along with their lengths and widths (RoWs). The following map also shows the roads classifications and phasing plans for their development in the city.

Figure 3.132: Roads Network for Skp-13-Jhabran

3.5.4.1. **Project Area (PA)-SKP-14 (Jaranwala Road)**

Description of Project Area

Area running parallel about 1-2 km in depth along north western side of Jaranwala road from Faizpur interchange to Dhamkey settlement.
Chapter 3: PROJECT DESCRIPTION

Existing Built up area
640 acres

Proposed Land use for (PA)-SKP-14 (Jaranwala Road)

This project area is located along Jarranwala Road, from Faizpur Motorway Interchange towards Sharaqpur Road, where dominating land use is Residential. The total area reserved for Residential development accounts to 2975 acres. A relatively larger allocation for Residential development in this project area is due to availability of access to City District Lahore via Motorway through Faizpur Motorway Interchange.

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Land use</th>
<th>Area (Acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Residential Proposed</td>
<td>2975</td>
</tr>
<tr>
<td>2</td>
<td>Builtup Area</td>
<td>640</td>
</tr>
<tr>
<td>3</td>
<td>Total Project Area</td>
<td>3250</td>
</tr>
</tbody>
</table>
Faizpur Motorway Interchange on Jaranwala Road is a major intersection point of access roads connecting nearby cities. Therefore, considering the potential of development around said point, a buffer of 1km around whole interchange is allowed to be used for residential development provided that NOC is taken from NHA for said area. Moreover, the proposed area for development should not fall under notified Khasras of Ravi River Front Urban Development Project (RRFUDP).

Map showing status of existing land use map along subject road, map with proposed land uses for the same and the map showing housing schemes in this area is shown below:

![Proposed Land Use Map for (PA)-SKP-14 (Jaranwala Road)](image-url)

Figure 3.134: Proposed landuse map for (PA)-SKP-14 (Jaranwala Road)
Proposed Road Network for (PA)-SKP-14 (Jaranwala Road)

This project area is located along Jarranwala Road, from Faizpur Motorway Interchange towards Sharaqpur Road, where dominating land use is Residential. Faizpur Motorway Interchange on Jaranwala Road is a major intersection point of access roads connecting nearby cities. So no need to propose new road in the said site.

3.5.4.2. Project Area (PA)-SKP-15 (Lahore Muridke Road)

Description of Project Area

Area running parallel to Lahore Muridke Road upto the built up area in the eastern western side

![Figure 3.135: Existing landuse map for SKP-15 (Lahore Muridke Road)](image)

Proposed Land use for SKP-15 (Lahore Muridke Road)

Empty pockets within built up area from KSK Interchange to Degh Nala have been proposed as residential excluding the area of River Ravi, while expansion of this
area is not possible under the boundary of the said project areas due to the boundary of river Ravi so the expansion of this area has been accommodated in subject site.

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Land use</th>
<th>Area (Acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Residential Proposed</td>
<td>3556</td>
</tr>
<tr>
<td>2</td>
<td>Builtup Area</td>
<td>500</td>
</tr>
<tr>
<td>3</td>
<td>Industrial Proposed</td>
<td>543</td>
</tr>
<tr>
<td>4</td>
<td>Total Project Area</td>
<td>4541</td>
</tr>
</tbody>
</table>

Figure 3.136: Proposed Land use for SKP-15 (Lahore Muridke Road)

Proposed Road Network for SKP-15 (Lahore Muridke Road)

The result of the theoretical models shows that there is essential need for addition and upgradation of road linkages within Lahore-Muridke Road to facilitate the population projected for the next 20 years. Therefore, the amendment plan suggests a number intra city roads as mentioned in the following table:
Chapter 3: PROJECT DESCRIPTION

Table 3.79: Proposed Roads and Right of Ways

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Road Category</th>
<th>Right of Way (ROW)</th>
<th>Length (Kilometers)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Primary</td>
<td>120</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Secondary</td>
<td>80</td>
<td>3</td>
</tr>
</tbody>
</table>

Similarly, the following map shows the location/alignment of proposed intra-city roads along with their lengths and widths (RoWs). The following map also shows the roads classifications and phasing plans for their development in the city.

Figure 3.137: Proposed Road Network for SKP-15 (Lahore Muridke Road)
3.5.4.3. PA-SKP-16 (Lahore Murideke Road)

Description of Project Area

The area along GT Road connecting with Lahore Jaranwala Road. Lahore Pindi Raiwaly track is passing form the area.

Proposed Land use for SKP-16 (Lahore Murideke Road)

Empty pockets within built up area from Shahdra to KSK Interchange have been proposed as residential excluding the area of River Ravi, while expansion of this area is not possible under the boundary of the said project areas due to the boundary of river ravi so the expansion of this area has been accommodated in subject site.

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Land use</th>
<th>Area (Acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Builtup Area</td>
<td>7862</td>
</tr>
<tr>
<td>4</td>
<td>Total Project Area</td>
<td>7862</td>
</tr>
</tbody>
</table>
Kala Shah Kaku Motorway Interchange is a major intersection point of access roads connecting nearby cities. The Area of 1km buffer around the said interchange is all reserved for agriculture except area bounded by the Western side of Motorway, Lahore Sheikhupura Road and South of Railway Track which can be used for industrial purpose subject to grant of NOC by NHA.

![Proposed landuse map for SKP-16 Lahore Muridke Road](image)

Figure 3.139: Proposed landuse map for SKP-16 Lahore Muridke Road

Proposed Road Network for SKP-16 (Lahore Murideke Road)

The project area is started from Shahdra to KSK Interchange have been proposed as residential excluding the area of River Ravi, while expansion of this area is not possible under the boundary of the said project areas due to the boundary of river ravi so no new road has been proposed in the subject site.
3.5.4.4. PA-SKP-17 Lahore Shiekhpura Road

Description of Project Area
The area is started from Kot Abdul-Malik Motorway Interchange on subject road to the BRB Canal. In the Site SKP-17, Kot Abdul Malik interchange is a major intersection point of access roads connecting nearby cities.

Proposed Landuse for PA-SKP-17 Lahore Shiekhpura Road
In the Site SKP-17, Kot Abdul Malik interchange is a major intersection point of access roads connecting nearby cities. Therefore, considering the potential of development around said point, Western side of a buffer of 1km around interchange is allowed to be used for industrial and eastern side of the same for residential development provided that NOC is taken from NHA for said area. However, the compatibility of the proposed land use with existing ones will not be ignored. Moreover, the proposed area for development should not fall under notified Khasras of Ravi River Front Urban Development Project (RRFUDP).
Chapter 3: PROJECT DESCRIPTION

Figure 3.141: Proposed Landuse for PA-SKP-17 Lahore Shiekhpura Road

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Land use</th>
<th>Area (Acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Builtup Area</td>
<td>1662</td>
</tr>
<tr>
<td>2</td>
<td>Total Project Area</td>
<td>1662</td>
</tr>
</tbody>
</table>
Proposed Road Network for PA-SKP-17 Lahore Sheikhupura Road

The area is started from Kot Abdul-Malik Motorway Interchange on subject road to the BRB Canal. By considering the potential of development along Lahore Sheikhupura Road from Kot Abdul Malik interchange to BRB Canal, western side of a buffer of 1km around interchange is allowed to be used for industrial and eastern side of the same for residential development without proposing any new road in the said area.

3.5.4.5. Site-SKP-18 (Lahore Sargoda Road)

Description of Project Area

The site is in circular form near settlement Dhatpura and is located in east of Farooqabad.

![Existing Land use Map for SKP-18 (Lahore Sargoda Road)](image)

Proposed Land use for SKP-18 (Lahore Sargoda Road)

The industrial area at Lahore Sargodha road starts from the commissioner’s Road covering the southern side of Dhatpura settlement near near Maachhi kay Village.
and Jhamkay, including the existing oil depots approximately 1 km in depth, declared as Special Development zone for the development of industrial area including oil depots in a defined zone.

To achieve proper zoning as per trend observed by survey and site situation and by considering the potential of development around said point, the existing oil depots declared under special development zone as No development problem was seen there due to the existence of gap between existing settlements and oil depots.

![Figure 3.143: Proposed landuse map for SKP-18 (Lahore Sargoda Road)](image)

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Land use</th>
<th>Area (Acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Builtup Area</td>
<td>2055</td>
</tr>
<tr>
<td>2</td>
<td>Total Project Area</td>
<td>2055</td>
</tr>
</tbody>
</table>

Proposed Road Network for SKP-18 (Lahore Sargoda Road)

The result of the theoretical models shows that there is essential need for addition and upgradation of road linkages at Lahore Sargodha Road to facilitate the
Amendment in Master Plan for Lahore Division (The Project)
Environmental Impact Assessment (EIA) Report

Chapter 3: PROJECT DESCRIPTION

population projected for the next 20 years. Therefore, the amendment plan suggests a number intra city roads as mentioned in the following table:

Table 3.80: Proposed Roads and Right of Ways

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Road Category</th>
<th>Right of Way (ROW)</th>
<th>Length (Kilometers)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Primary</td>
<td>120</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Secondary</td>
<td>80</td>
<td>8</td>
</tr>
</tbody>
</table>

Source: Amendment Plan, 2015

Similarly, the following map shows the location/alignment of proposed intra-city roads along with their lengths and widths (RoWs). The following map also shows the roads classifications and phasing plans for their development in the city.

![Figure 3.144: Proposed Road Network for SKP-18 (Lahore Sargoda Road)](image-url)
3.6. INFRASTRUCTURE AND UTILITY SYSTEM REQUIREMENTS

3.6.1. Electricity

The total electricity requirement of the whole residential and industrial areas for projected master plan will be 3500 MW till 2035. The electricity requirement will be supplied by LESCO. The individual site project areas electricity requirement is given in chapter-6.

3.6.2. Natural Gas Requirement

About 1200,000 Mega liter of natural gas will be needed for the projected master plan till 2035. The natural gas requirement will be full filled from SNGPL, Biogas and LPG. SNGPL asked to develop detail plan for Natural gas supply after the notification of master plan.

3.6.3. Water Requirement

The total water requirement for both industrial and residential areas for projected master plan will be 6500 cusecs up till 2035. The quantity is calculated by taking water consumption 300 LPCD for residential areas. For industries, the water requirement is calculated by following pattern.

Small Industry – 1500 meter cube per day

Medium Industry – 6000 meter cube per day

Heavy Industry – 10,000 meter cube per day

The water requirement will be fulfilled from ground water resource. Detail water requirement and its services design will be done after the notification and implementation of the master plan.

3.6.4. Sewerage Requirement

Sewerage will be required for residential and industrial settings in the projected master plan. For Lahore district WASA is in the jurisdiction for sewerage system while other districts are the jurisdiction of districts governments. The sewerage will be lay down by respective service provider in the districts soon after the notification of the implementation of the projected areas in the master plan by Lahore
Development Authority. The Lahore Development Authority requested service providers of respective districts to design detail plan of sewerage after the notification of master plan. The industries and private housings should construct own sewerage which then connected to the main sewerage line.

3.6.5. **Solid Waste Management**

Solid waste generation rate on average in Lahore City is approximately 0.85 kg per capita per day. Considering the design population 6.9 Million of the project areas of master plan 2035, the total municipal solid waste will be generated 10,000 tons/day. The major part of this waste is the residential. Types of solid waste from residential areas will be the food wastes, paper, cardboard, plastics, textiles, leather, yard wastes, wood, glass, tin cans, aluminum, other metals, ashes, street leaves, special wastes and household hazardous waste. Commercial waste comes from stores, restaurants, markets, and offices. Types of commercial waste are paper, cardboard, plastics, wood, food waste, glass, metals and sometimes-special wastes. The industrial waste comes from industry and depends upon the type of industry. The management of solid waste commercial and residential in Lahore district is the responsibility of Lahore Waste Management Company (LWMC) while in other 3 districts (Shiekhpura, Kasur and Nankana) the solid waste is collected by the district government. For project areas of Lahore district LWMC will be the responsible for solid waste management while in other districts the LWMC model will be replicate in district governments for the better management of solid waste.

3.6.6. **Road Network**

Lahore division is connected with well-established road network that comprised of motorway, truck road, primary roads, secondary roads, local roads, streets and rural roads. The roads that carries the intercity traffic and major volumes of sub urban travel includes the GT Road both eastern and northern sections, Sheikhpura Road, Jaranwala/ Sharaqpur Road, Multan Road, Raiwind Road, Ferozepur Road and M-2 motor way. Partially constructed Lahore Ring Road (LRR) with its operation loops in west, north and eastern side of the city has improved accessibility for inter suburban travel and regional traffic to the Lahore airport. Provincial roads connect mainly between urban districts. The existing road network of the Lahore division is shown in map below-:
In order to improve the connectivity of existing cities in Lahore Division with the proposed project areas of the master plan more structure roads have been planned that have potential of adequate right of ways and connectivity with the project area. The planned road network is shown in map below:-

Figure 3.145 Existing Road Network Map of Lahore Division
Chapter 3: PROJECT DESCRIPTION

Figure 3.146 Proposed Road Network Map of Lahore Division
4.1. General

This chapter deals with an analytical overview of the different alternatives that have been considered in the master planning stage. The analysis has been carried out critically so as to justify the need of the Project. Besides the economic viability, environmental and social soundness of the proposed Project should also be considered when analyzing various alternatives. The various alternatives considered during the conduct of the study are as under:

- No Project Option (NPO)
- Location alternatives
- Layout alternatives
- Design alternatives

4.2. No Project Option (NPO)

Lahore, the city of gardens is the provincial capital of Punjab. It is the second largest city of Pakistan with a population over 7 million. It is enriched with cultural and historical monuments and attracts thousands of visitors each year. Spatially it is expanding towards southern and eastern sides. Lahore has been dynamic in its physical as well as functional growth, but has usually developed in a piecemeal fashion independently although planning was there. It took its present shape as a result of three planning efforts which were exercised one after the other. All these planning documents were formed to manage the rapidly changing character of the city from industrial to service, trade and business hub.
4.3. Planning Efforts

4.3.1. Master Plan for Greater Lahore, 1966

First planning effort for the master plan of Lahore started in 1960. On the recommendation of Second Five Year Plan (1960-65) of the Government of Pakistan, the preparation of Master Plan for Greater Lahore was started in 1961. For this task a master plan committee was set up by the Punjab Government realizing that neither the Lahore Municipal Corporation (LMC) nor the Lahore Improvement Trust (LIT) was equipped to undertake this job.

The first plan was supposed to delineate the zoning and subdivision regulations; development of new satellite towns and establishment of 24 km green belt surrounding the whole city. It particularly focused upon the augmentation of economic base of the present town and the need to create new industrial towns. A very little effort was made to ensure the enforcement of this plan but the industrial estates were developed at Kot Lakhpat, Chunian to the south and Kala Shah Kaku in the north of the city. It was also reported that greenbelt around the city could not be provided due to perpetual urbanization, development pressure and failure to create self-sufficient industries. Figure 4-1 shows the map of the Master Plan for Greater Lahore, 1966.

This plan preparation process took five years and was submitted to the Provincial Government for vetting and approval in 1966. However, it was not until 1972 when the Master Plan, after remain pending for more than six years due to administrative bottlenecks and legal lacuna, was sanctioned by the Punjab Government. By the time this Plan came into force on 1st September 1972, the circumstances had changed and the data on which its proposals were based got outdated. Further, unplanned development continued to take place in the areas proposed in the Master Plan for planned development. So excessive delays in approval rendered the Master Plan outdated by the time it was put into operation and this became the key reason due to which this Plan could not taste the flavor of successful implementation.
Figure 4.1 Master Plan for Greater Lahore, 1966
4.3.2. Lahore Urban Development and Traffic Study (LUDTS), 1980

The Lahore Urban Development and Traffic Study (LUDTS) was conducted as a joint team of foreign and local consultants for LDA. The study was financed by a credit from the International Development Agency (IDA), World Bank. The intention of this urban planning study was to provide a structure plan or guiding framework to act as a background for action programs in the metropolitan areas of Lahore for 20 years’ time horizon (1981-2000). The justification given for this ‘Structure Plan’ was that the Master Plan -1966 was drafted on the basis of information collected almost a decade earlier. This study declared the Master Plan as an inadequate document for rigid adherence and implementation. Figure 4-2 shows the map of LUDTS.

The LUDTS was formed in 1980 and is important to note because of the active participation of the Lahore Development Authority (LDA) in its preparation and implementation. Moreover, it was prepared in a short time period based on land use surveys and very little primary data. The plan itself had no legal status except as a guiding document for the LDA. However, one of the main factors that contributed to the fame of the LDA as a leading development authority was the implementation of the Structure Plan-1980. The main focus was to prepare a structure plan for the Lahore Metropolitan Area (LMA) for a time period of 20 years. This plan indicated the development directions from south to southwest and some development was also proposed across the river Ravi. The particular focus was on densification of built-up areas, decentralization of existing centres and establishment of new centers. The LDA has been successful to a great extent in controlling the development of private housing schemes and ensuring the primary road network while applying the proposals of the Structure Plan. The policies regarding densification and development of old built up areas could not be pursued due to the lack of local plans which could not be prepared.
As the Structure Plan 1980 was about to expire in 2000, the LDA decided to prepare a new plan for Lahore, and this task was entrusted to NESPAK (a local consulting
firm). The first draft of the new Plan was completed in July 1998 and the consulting firm submitted it under the title ‘Integrated Master Plan for Lahore-2021’ to LDA for comments and review. The draft Plan received severe criticism on various accounts not only from the concerned staff of LDA but also from technical experts, eminent professionals and academicians. The consulting firm revised the Plan in the light of numerous comments and submitted the revised version to LDA in November 2002. During this process, the status of LDA and Local Government set up of Lahore changed due to the implementation of the Devolution Plan of the military regime in August 2001. A New City District Government (CDG) was set up in Lahore by dividing the city into six towns, each governed by a Town Municipal Administration. Initially, the Devolution Plan proposed merger of LDA in CDG but later, due to some political pressures and vested interests, LDA remained as a separate entity of CDG through LDA Ordinance 2002. Under this scenario, the new Master Plan had to be thoroughly revised. But after few changes mainly in the proposed institutional set up, it was approved by the Lahore District Council for implementation on October, 2004. Figure 4-3 shows the IMPL map.
IMPL includes the most of Lahore district and Ferozewala Tehsil of Shekhupura district and an adjacent area of the Kasur district. The preparation process of IMPL
includes data accumulation, processing, planning surveys, field visits and analytical studies. A detailed land use survey was conducted in 2001-2002 of the study area. The final draft of the plan was presented to the Project Steering Committee which cleared it in June, 2004. The plan was finally approved by the Lahore District Council on October 2004. The form and contents of the IMPL appears to be quite comprehensive as compared to the previous two plans prepared for Lahore.

The IMPL is the first development plan which has been approved by the CDG council after the implementation of devolution plan in Pakistan. The general observation and the interviews with various stakeholders reveal that the IMPL proposals have not been implemented in letter and spirit albeit it was approved by the CDG Lahore. There could be many reasons for the lack of its implementation and the main reasons include; the erroneous forecasts of various land uses, inappropriate location of proposed land uses, irrational proposal for designation of roads for commercialization, inadequate support of policy for infill and densification and a lack of strategy for the financing of the proposed projects.

On the whole, IMPL document is relatively a comprehensive but there are areas where there is a need to show special interest and reworking. First of all the plan needs to have exclusive and focused strategy in orientation with more economic consideration. Then there is a dire need to refine and revise the projections related to population, employment and land use requirements. After this, to facilitate and harmonize the urban development, a robust and detailed strategy must be included as a part of the master plan. Along with this, the plan will benefit from a comprehensive urban design assessment to generate more effective zoning and subdivision regulations. In the end, zoning and subdivision regulations are required to assess to foster a more enabling approach to urban development.

This has resulted in the intermixture of incompatible land-uses and numerous civic problems including traffic hazards, traffic bottlenecks, lack of integrated community facilities/service, public infrastructure, haphazard growth of planned and unplanned private housing societies, illegal growth of cottage industries etc.

In the IMPL sufficient arrears were proposed for the residential expansion, industrial, commercial and institutional zones including public infrastructure in South. However, the proposed city in reality expand in one direction due one or other reasons as
mentioned above. This created multifarious problems for the regulatory as well as implanting authorities and agencies responsible for the provision of civic and utility public infrastructure services. Side by side towards North, the city expansion took place in shape of regular and irregular schemed and the DHA also extended it various sectors beyond cantonment limits along Barki road, BRB canal, Hudiara drain towards Kasur. In the proposed plan areas was also reserved for Chunian industrial estate whereas about 20% of the estate is colonized in the last decade. Industrial development largely took place in haphazard manner along Defence road, Sundar road, Manga-Raiwind road and adjoining areas. Due to this unplanned growth of industries and residential areas location proposed in the city municipal limits the rich agriculture land has also been compromised.

These problems are likely to worsen with the passage of time because of urbanization at rate of 7 % per annum, all parts of the city as well as division is affected. The present state of living environment in the city is also result of non-implementation of updated plans with respect of existing situation. The environment as an overall is deteriorating and threatening the sustainable development. The current issues are the lack of coordination of different control agencies with the city and division. Non provision of police force and demolition machinery for timely operation against illegal and unauthorized constructions. Weak and slow legal proceedings/action against the defaulters. Disrespect of laws and regulation and corruption.

Similarly from time to time various Outline Development Plans (ODPs), Agroville Development Plans for areas around Lahore has been prepared. These includes Bhai Phero Development Plan (1992-2017), Kahana Nau Development Plan (2000-2025), Kot Radha Kishan Development Plan (1994), Nankana Sahib Infrastructure in Selected Settlement Agroville Plan, Pattoki Infrastructure in Selected Settlement Agroville Plan, Raiwind Development Plan, Outline Sheikhupura Development Plan etc. were prepared but cannot be implemented for reasons mentioned above.

Over the last few years the city has undergone some significant changes. Implementation of major infrastructure projects such as Lahore Ring road, Metro Bus Transit, Under Passes, Fly overs etc. has changed the characteristics of the Lahore
from old one. The IMPL is unable to cope with the present situation even if all the resources are gathered to implement it.

On account of this reality as the first phase the IMPL was amended in 2014 and notified in 2015. Figure 4-4 shows the amended IMPL phase-I.

With the approval of LDV Master Plan Rules, 2014 which provides the jurisdictions of LDA over Lahore Division, this calls for immediate need to improve the quality of environment and ensure the development of environmentally sustainable and health city and division. Similarly, the various ODPs, Agroville Plans of these areas needs to be integrated in one Plan for the whole division. This solution can be achieve through proper study and updating for Master Plan of Lahore Division which will ensure the proper and regular coordination of all building control agencies. In this regards, no project option will mean that the concerned authority i.e. LDA takes no action and let the problems worsen. Therefore, NPO is not a feasible option.

4.4. Location Alternatives

An urban area/city cannot be planned in isolation. This is particularly true in case of Lahore, which being the provincial capital and a metropolis has a vast area of influence from master planning point of view. With the creation of LDA, LMA was delineated in May, 1975 and was later extended towards south in January, 1988 based on the growth trends in the southern corridor. Delineation of the LMA boundary was affected for better development control and channelizing urban growth. The previous IMPL has taken the district Lahore along with Ferozwala tehsil and the adjacent rural areas of Kasur district as the study area which is based on the LDA jurisdiction areas.

With the passage of time and the hurdles faced in the implementation of the IMP and considering the need for additional land for housing, industrial and the current agriculture practices the extent of the area to be considered for the planning of the updated Master Plan needs to be redefined.

Various options were available based on the land requirements for the future demands for the residential, industrial, commercial, agriculture and public utilities. Following criteria was developed to identify the most suitable areas for fulfill these land needs:
Chapter 4: ANALYSIS OF ALTERNATIVES

i. Wherein possible, the land uses of built up areas in the existing Master Plan Outline Development Plans and Agroville Development Plans Proposed in past is kept intact.

ii. Future land uses are proposed for housing, industry and special Development Zone on the basis of results of surveys and studies.

iii. Existing infrastructure and proposed, road network and other linages / bye passes are proposed as per the need for integrated development and to provide efficient transportation linkages and synergy.

iv. Land allocations for spatial growth in the form of concentric circles and following compact growth principles.

Therefore, under the provision of LDA Act, 1975 and newly passed rules the LDA Master Plan Rules, 2014 has extended the jurisdiction of the LDA from Lahore districts with some adjoin areas to Lahore Division which is now the criteria for the Project Area. Therefore this area includes the Lahore District, Kasur District, Sheikhupura District and Nanakana Sahib District areas based on the above criteria. Map showing the boundary limits of these districts is attached as Figure 4-5.

4.5. Layout - Alternatives

4.5.1. Criteria

Considering the rules master plan location criteria is based on following aspects:

- Vision for growth and development;
- Objectives containing demands of various segments of economy;
- Strategy for area development;
- Land use plan;
- Peri-urban structure plan;
- Proposed projects and programs; and
- Proposed institutional arrangements and implementation framework.
Based on the above criteria the study revealed that in Lahore district and adjoining areas large scale residential development has taken place along radial routes as linear development as well as in surrounding areas in the shape of clusters, private housing schemes and land sub-divisions to cater for the need of local residents and labor force working in the adjoining areas. Similarly need for the ample spaces for educational institutions, parks and industrial zones are also manifold. Hence these were also considered for the layout. Therefore, the major parameters considered for the layout are residential, commercial and agriculture along with allocation of appropriate space for other infrastructural facilities.

Based on the study and analysis there sites namely Site-LHR-I, 2 and 3 are proposed in Lahore district, fourteen sites namely Site-KR-01 to 14 are proposed in Kasur district, fourteen sites namely Site-SHP-1 to 14 in Shakupura district and nine sites namely Site-NSB-1 to 9 are prosed in Nankana Sahib district for the amendment in IMPL. Map showing the district wise proposed areas are attached as Figure 4-6.

4.5.2. Residential Areas

Lahore is the second largest city of Pakistan and its population is increasing at alarming rate due to the urbanization and industrial development. Therefore, proposed planned and affordable housing along with basis infrastructure services is the key issues and one of the mega reason for the master planning. Hence a major share of residential areas has been included in Lahore division master planning exercise. Almost all the site of four districts forming Lahore division has provision for the residential areas except the designated industrial estates. Map showing the existing and proposed residential areas is shown in Figure 4-7.

4.5.3. Industrial Areas

Considering the current status and development trends need for the industrial areas cannot be avoided to keep the division in balance as well as support the country economy.

The Punjab Board of Investment and Trade (PBIT) and Lahore Chamber of Commerce and Industries (LCCI) has demanded for the provision of more industrial areas to accommodate the existing as well as new proposed Industrial Projects to
invigorate economic performance of the region through enhanced employment opportunities in Industrial Sector, attract more industrial projects and foreign investment and to keep the residential areas free from the industrial areas by allocated spaces at appropriate locations.

The Punjab Industrial Development and Management Company (PIDMEC) has also launched some mega industrial Projects such as Quaid-e-Azam Apparel Park in Sheikhupura and Sunder Industrial Estate need to be integrated through amendment in the proposed unified Master Plan of Lahore Division.

Considering and conducting demand analysis in Lahore district industrial areas provision is provided in Site 1, 2 and 3, in Kasur district site 2, 3, 9 and 10 have provision of industrial areas, in Shahkhupura district sites 1, 2, 3, 5, 6, 8 and 9 have provisions for industrial areas and in Nanakana Sahib district sites 1, 3 7, 8 and 9 have provision for the industrial areas. Map showing the location of the proposed or adopted existing industrial areas are shown as Figure 4-8.

4.5.4. Transportation Facilities

Road functions are classified into five categories: main highways, primary, secondary, tertiary and access roads. Main highways are the exit roads joining the districts of Lahore, Kasur, Shekhupura and Nanakanan sahib.

Primary roads are mostly main roads of the city while secondary roads act as connection between tertiary and primary roads and are constructed to reduce traffic congestions on the primary roads. Tertiary roads are normally those roads present inside proposed societies. To ease the traffic congestion problem in the City, primary roads development and improvements are already been initiated upto the international standards and a comprehensive plan is already available which will be integrated with this plan.

Other roads which are deemed necessary to improve the accessibility of the proposed areas in line with the designated routes such as industrial area and agricultures requires movement of heavy equipment will also be included or proposed or a procedure will be laid down along with time lines etc.
The existing and proposed new inter-city and intra-city which are being proposed or being implemented to improve the transportation such as orange line Project will integrate and considered for the update Master Plan. Location of the existing road infrastructure and proposed developments are shown as Figure 4-9.

4.5.5. Agriculture Areas

As per the law the concerned Authority shall notify the area falling outside the peri-urban area as agriculture area based on the intended and existing uses.

Land use in agricultural area are (a) Permitted use: (i) crop; (ii) orchard; (iii) pasture land; (iv) livestock such as dairy or poultry farm; (v) forest; (vi) nursery or a greenhouse, horticulture; (vii) tube well; (viii) existing rural settlement or village; (ix) place of worship or prayer; (x) place of burial or cremation; (xi) corner shop; (xii) house within and contiguous to rural settlement; and (xiii) farm house within the boundaries of a farm if the minimum area of the farm is not less than 4 kanals. (b) Permissible use: (i) agricultural machinery workshop; (ii) brick kiln, milk chilling and pasteurization; (iii) basic health unit; (iv) animal husbandry clinic; (v) country club; (vi) public or private recreational park; (vii) zoo or wildlife park; (viii) CNG station and petrol pump; (ix) BTS tower; (x) community facility or public utility; (xi) Bus terminal or truck stand (`C' class bus terminal not less than 32 kanals in District Lahore and not less than 8 kanals in other districts and `D' class bus terminal not less than 4 kanals); (xii) fruit and vegetable market; (xiii) grain market; (xiv) cattle market; and (xv) education and health institution.

Based on this the proposed and exiting areas for the agriculture were identified and will be notified and concerned departments shall ensure strict compliance of the relevant provisions of law regarding uses as described above. Map showing the existing agri areas and adopted as agri areas is shown as Figure 4-10.

4.5.6. Future Development of the City

Presently, Lahore has attained the status of being second biggest city of Pakistan and the provincial capital of Punjab. Lahore Metropolitan Area (LMA) comprises of District Lahore, Tehsil Ferozawala (District Sheikhupura) in the north and part of Tehsil Kasur in the south. Growth of Lahore during 1961-1970 is remarkable and specially when in 1966 a master plan was prepared to control the unplanned growth
of Lahore. Major development started after the formation of Lahore Development Authority (LDA) in 1975.

After 1978, number of housing schemes like Awan Town, Campus Colony, Map showing the Growth of LMA during Different Periods Canal View Cooperative Housing Society, Hamid Park Housing Scheme (HS), Rehmanbad etc. got approval from LDA. There was a boom of housing schemes in Lahore during the period 1981-1990. As per the record of Lahore Development Authority (LDA), there are 140 housing schemes (both public and private) which got approval for the purpose of planned housing development. Out of these 140 housing schemes, a sample of 15 is taken. Each selected scheme contains a minimum of 1000 plots of different categories.

Urbanization phenomenon occurred because of migration (Rural to Urban & International) and natural increase. There is an astonishing thing that every year 600,000 - 700,000 people are arriving in the major cities from various parts of the country, thus pushing up to the demand for houses, but construction is not picking up at the required level. Natural increase is another factor which has also increased the demand for housing in the country. Both these factors (natural increase and migration) exerted a huge pressure and resultantly the population of Lahore increases very rapidly. This rapid increase in population then ultimately increased the demand of housing so as to accommodate the additional population within the boundary of LMA.

According to 1998 census, the housing stock in LMA was 967,202 of which 77.62% was in urban areas of LMA. More than 91% of the total stock was in District Lahore, around 7% in District Seikhupura and around 2% in District Kasur areas.

Land prices in the suburbs of Lahore- have manifold since 2001. In accordance with current analysis the price of one Kanal of land vary and ranges from 2 crore to 3.5 crore. Similarly, 01 Kanal house in areas like Defense, Gulberg, Model Town, Tech Society, Garden Town, etc. are 3.0 - 4.5 Crore of rupees.. These values are diminishing hopes of middle class to own property despite Government's assurances about resolving housing problems. According to owners and property dealers, the rates increased when overseas Pakistanis invested their assets in their homeland after the 9/11 incident.
According to LDA, Directorate of Katchi Abadis Local Government and Rural Development, Government of Punjab, there are 308 Katchi Abadis in Lahore, out of which LDA has developed 73 Katchi Abadis having a population of 163,000 to grant the proprietary right. According to Asian Development Bank (ADB) Pakistan Urban Sector Profile 1993, the urban population of Lahore living in Katchi Abadis and slum areas was about 1.7 million or about 38% of the city population. After attaining the proprietary rights the people prefer to stay in these slums and Katchi Abadies. The reason behind this is the location of these areas. These areas are very close to the main city area and mostly are situated near the down town area. Due to this attraction the people are reluctant to leave the places and avoid constructing houses in the new schemes situated far away from the city center.

All these issues will be tackled in the updated plan by allocating appropriate lands with designated uses as through notifications in the updated Plan.

4.5.7. Recreational Facilities

In normal condition, parks and open spaces will be used as recreational purposes. Parks and open spaces are also helpful for evacuation purposes during emergencies such as earthquakes, fire hazards, landslides etc. To meet this objective, to minimize the traffic congestions in the city and outlet bottlenecks ample spaces and land will be transformed into an urban and recreational parks.

In addition to this, new riverside parks along with footpaths are proposed at the appropriate locations. Government offices, which were minimal in the whole city have been proposed to shift in Government offices complex situated at new allocated areas; therefore, their evacuated land will also be developed as parks and open spaces to serve as recreational sites as well as evacuation spaces in case of any emergency.

4.6. Design Alternatives

As the design for subprojects has to be carried out at later stage, so different design alternatives for each subproject will be carried out based on site conditions and best alternative will be selected for implementation. For the Project design, National as well as International design standards shall be adhered strictly. Another important aspect for the Project design shall be its resistance to natural disasters such as
floods, earthquakes etc. Strict rules shall be enforced for the compliance of local building codes, suitable for construction of buildings, which can resist an earthquake like October 8, 2005. The design will be initiated parallel to the construction works in order to save time.

4.7. Conclusion

Based on the pros and cons of different location alternatives and town layouts it may be concluded that no other alternative such as site shifting of the whole of Lahore city is suitable. However, best usage of the existing site, proposed town layouts, improvement/rehabilitation of the existing facilities along with provision of all new facilities, and new towns will be most viable solution and will maximize the environmental, social and economic benefits with the minimum disturbance to the area.
CHAPTER 5

DESCRIPTION OF BASELINE ENVIRONMENT

5.1. GENERAL

This chapter describes the baseline conditions, which cover the existing physical, ecological, and socio-economic environment of the Project Area as well as the Study Area. Information on these aspects has been derived from the desk study of available data, field visits to the Project/Study Area and information obtained through detailed consultation with the Government departments and other agencies.

5.2. PHYSICAL ENVIRONMENT

5.2.1. Topography

The topography of Lahore division is generally plane sloping from north-west to south-west. The general height of the Lahore division is about 190 meters above the sea level. River Ravi is flowing in the mid while River Satlej is flowing on southern side towards Kasur just before the divisional boundary. The division may be divided into two parts, a low lying or riverine area along the two bordering rivers and upland, away from the rivers. Number of canals and sewerage nauhllahs are also present in the division. The topographic map of Lahore division is given as under:-

5.2.2. Geology

The project site is located in Punjab which is a vast plain of alluvial material, deposited by Indus basin and its tributaries crossing the Punjab Plain. The alluvial deposits underlying the site are deposited by the rivers.

The thickness of alluvial deposits in Lahore division is thought to be more than 300 m which are underlain by the basement rocks of the Indian shield. The alluvial deposits mainly consist of sands, with intercalation of silt and clay layers of varying thickness.
5.2.3. **Seismology**

The project site falls in the Punjab plain which shows low to moderate level of seismicity. The project region has also been subjected to severe shaking in the past due to earthquakes in the Himalayas. The epicenters of low to moderate magnitude earthquakes recorded in the Punjab Plain are associated with the subsurface fractures in the basement rocks which are concealed by the thick alluvial deposits. The known main active fault near Lahore is the Main Boundary Thrust (MBT) which passes at a distance of about 180 km towards northeast along the Himalayan front.

Probabilistic seismic hazard assessment recently carried out for Lahore area as part of the revision of seismic provisions of the Building Code of Pakistan shows that the project area falls in Zone 2A. Seismic zone of Pakistan is shown in figure 5-1.

It is therefore recommended that the project structures should be designed to cater the requirements of Zone 2A of Building Code of Pakistan (2007). Based on the evaluation of tectonic setting and seismicity of the project region, it is recommended that the important project structures should be designed to withstand a horizontal peak ground acceleration of 0.15g with 10% probability of exceedance in 50 year.

![Seismic Zone of Pakistan](image)

Figure 5.1 Seismic Zone of Pakistan (Geological Survey of Pakistan)

5.2.4. **Soil**

Subsurface Lithology is composed of Lean Clay/Silt/Silty/Sand/Poorly Graded Sand with Silt up to maximum investigated depth of 30 m below NSL. The topmost soil layer mostly comprises of Lean Clay in very soft to soft state. The thickness of this layer is approximately 3.0 m below NSL. This cover is absent at places.
Chapter 5: DESCRIPTION OF BASELINE ENVIRONMENT

A 7.0 m thick layer of Silt/Silty/Sand/Poorly Graded sand with silt material in loose state is present underneath the topmost layer. The water table in the area is shallow in general having water logging and water pounding in some places. The minimum depth of ground water table observed at site is about 1 meter but it varies from 3.0 to 70.0 meter below NSL.

The base soil of project areas may need to be improved with ground improvement techniques for safe placement of foundations and structures.

5.2.5. Land Use

The land use map of the Lahore Division is given as under:

![Existing Landuse Map of Lahore Division](image)

The existing landuse details of the project areas are given as under:

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Landuse</th>
<th>Area (Acres)</th>
<th>%age</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Existing Builtup Area</td>
<td>62,689.74</td>
<td>17.99%</td>
</tr>
<tr>
<td>2</td>
<td>Proposed Agriculture</td>
<td>92,065.27</td>
<td>26.41%</td>
</tr>
<tr>
<td>3</td>
<td>Future Reserve</td>
<td>1,208.78</td>
<td>0.35%</td>
</tr>
<tr>
<td>4</td>
<td>Existing Agriculture</td>
<td>192,601.58</td>
<td>55.26%</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>348,565.38</td>
<td>100.00%</td>
</tr>
</tbody>
</table>
Additionally, the proposed landuse details of all the project sites are given in the following table;

Table 5.2 Proposed Landuse Details of Project Areas

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Landuse</th>
<th>Area (Acres)</th>
<th>%age</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Agriculture</td>
<td>92,065.27</td>
<td>26.41%</td>
</tr>
<tr>
<td>2</td>
<td>Chunian Industrial Estate</td>
<td>232.97</td>
<td>0.07%</td>
</tr>
<tr>
<td>3</td>
<td>Existing Built-up Area</td>
<td>62,689.74</td>
<td>17.99%</td>
</tr>
<tr>
<td>4</td>
<td>Future Reserve</td>
<td>1,208.78</td>
<td>0.35%</td>
</tr>
<tr>
<td>5</td>
<td>Green Buffer</td>
<td>11.32</td>
<td>0.00%</td>
</tr>
<tr>
<td>6</td>
<td>Industry</td>
<td>56,519.84</td>
<td>16.21%</td>
</tr>
<tr>
<td>7</td>
<td>Residential</td>
<td>127,581.38</td>
<td>36.60%</td>
</tr>
<tr>
<td>8</td>
<td>Special Development Zone</td>
<td>7,254.94</td>
<td>2.08%</td>
</tr>
<tr>
<td>9</td>
<td>(Data Missing)</td>
<td>1,001.12</td>
<td>0.29%</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>348,565.38</td>
<td>100.00%</td>
</tr>
</tbody>
</table>

5.2.6. Climate

Lahore has distinct seasons marked by wide variation in temperature. The coldest month is January in which the mean maximum temperature is 19.4 °C and the mean minimum temperature is 6.6 °C. June is the hottest month with the mean maximum temperature near 39.8 °C and the mean minimum temperature as 27.4 °C. Mean temperature of the region during the last 20 years (1991-2010) is given in Figure 5-2.
The average annual rainfall during the last 20 years period from (1991-2010) works out to be 55.25 mm. Nearly 70% of it received in the form of high intensity showers during the monsoon (July, August, September) and the remaining in winter. The yearly variations are considerable. The average monthly rainfall at Lahore during the last 20 years (1991-2010) is also shown in Figure 5-3.
Chapter 5: DESCRIPTION OF BASELINE ENVIRONMENT

The most humid period is in month of August with maximum average relative humidity is 85.3 % and minimum average relative humidity 61.2 %. The average relative humidity of Lahore region form last 20 years (1991-2010) recorded is shown in Figure 5-4.

![Relative Humidity Graph](image)

Figure 5.5 Average Relative Humidity of Lahore Region (Data Source: Climatic Data Processing Centre (CDPC), Pakistan Meteorological Department, Karachi)

During cold seasons of the year northern winds prevail and during hot seasons southern winds. Monthly mean velocity of the wind (Knots) taken for the period 1991-2010 are shown in Figure 5-5.
5.2.7. Water Resources

5.2.7.1. Surface Water

Surface water in the Study Area of the Project is present in the form of a river and canals. The details are given in Table 5-1:

<table>
<thead>
<tr>
<th>Table 5.3 Surface Water Bodies in Project Areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rivers</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Canals</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

In order to access the quality of surface water, Environmental Sampling & Analysis form 3rd party Environmental Laboratory has been carried out on rivers and canals. The locations of sampling point are given in Annex-IV while results are given in Appendix II.

Surface water samples were tested for 37 parameters in accordance with PAK-NEQS. The detail report is attached as Appendix II.
After detail analysis of surface water of canals and rivers, it is found out that only river Ravi have found high in pollution load with contamination of heavy metals and high organic matter.

5.2.7.2. Ground Water

Groundwater was encountered at around 1-70 m depth below the NSL as per environmental surveys. Given a margin for seasonal fluctuations, the groundwater may be considered to rise/fall beyond this depth by about 1 m. In order to check the quality of ground water, 16 samples have been taken from whole division by 3rd party Environmental Laboratory. The map of sampling groundwater is given as Annex-IV. The detail report is attached as Appendix II.

After thorough analysis of ground water taken from different districts, it is found out that samples taken from district Kasur and Lahore is unfit for drinking found high TDS and contaminated with heavy metal and microbes. There is no microbiological, chemical and toxic contamination found in samples that is taken from district Nankana Sahib and district Shiekhpura and can be utilized for drinking purposes.

5.2.8. Hydrology

Lahore division is a part of Punjab Province of Pakistan. Geologically, this area is a part of lower Indus Basin. The name “Punjab” itself is an indicative of healthy presence and importance of rivers in this area. This word “Punajab” comes from ‘punj-aab’ meaning five rivers. The five rivers of Punjab were Sutlej, Bias, Ravi, Jehlum and Chenab Rivers. It is to be noted here that Bias River have discontinued to flow in Pakistan, as discussed later. This blessing has resulted in cultivation on mast part of land in Punjab as well as in the study area.
Two main rivers pass from Lahore Division, Ravi River and Sutlej River. The slope of the land in planned area is to the south-west, which directs the rivers to flow in this path. Average slope of the area is 0.32m/km.

These rivers have a major contribution in glorious history of the study area. All the "historical assets" of Lahore, including but not limited to Lahore Fort, Badshahi Mosque and Kamran ki Baradari, were built adjacent to Ravi River.

As per the Indus basin treaty of 1960, six major rivers were divided among Pakistan and India. As per the treaty, the rights of Eastern Rivers (Sutlej, Bias and Ravi) were allocated to India, while the rights of Western Rivers (Chenab, Jehlum and Indus) were reserved with Pakistan. Since the Indus basin treaty, India has completed series of structures to store and divert water from upstream and use it for generation of electricity and irrigation. These interventions have put a stop to ecological and sustainable flows in these rivers, thereby depriving the downstream areas of Pakistan, including Lahore Division from naturally available water for irrigation. Two of the rivers, Ravi and Sutlej, allocated to India, still flows seasonally through the
study area. While Bias River have discontinued to flow. The old bed of Bias River still exists in Kasur. To meet the irrigation demands, Pakistan constructed multiple link canals which divert water from western rivers to Eastern Rivers.

The following link canals pass through our study area:

a. Bambanwala Ravi Bedian Link Canal
b. Qadirabad-Bulloki Link Canal
c. Balloki – Sulemanki Link
d. Lower Bāri Doāb Canal
e. Upper Chenab Canal
f. Lower Chenab Canal

In addition, the following hydraulic structures lie inside our study area

a. Balloki Barrage
b. BRB-Ravi Siphon

Furthermore, the planned area have abundance of water in the form of groundwater aquifer. The aquifer of Lahore District is broadly viewed as a single contiguous, unconfined aquifer. The presence of alluvial soil, frequent flooding and excessive rains in this region for hundreds of years have enriched this aquifer with abundance of water.

Groundwater for drinking purposes is extracted from a depth of 120-200 metres (m). It is pumped for irrigation, domestic, industrial and commercial purposes. Despite presence of link canals, the farmer falls short of water to irrigate crops. In order to meet the demands, more than 10,000 tube wells have been installed for agricultural purposes.

5.3. Natural and Biological Environment

Natural and biological environment account of the Project and Study Area is given in detail in Ecological Study attached as Appendix I of the report. However summary of the Ecological Study account for the baseline environment is given as under:-
5.3.1.1. Flora and Fauna

The baseline ecological study was of 30 days in which tours of the area were arranged to assess plant and animals in different times of the day present in different habitats. After a vigorous literature review, certain criteria were established to evaluate animal and plant species in different habitats. Keeping in view international and national legislation, protection status of species found in all habitats was determined. Significantly many birds and reptile species were found to be protected as they were either under threat as per IUCN Red list or were protect under national wildlife act. The project sites had significantly higher biodiversity richness which was 101 species of fauna and 148 species of flora. Fauna includes 70 species of birds, 13 of mammals, 15 of reptiles and 3 of amphibians whereas there were 148 species of flora in the area. None of the native plant species are under threat as per IUCN Red list but they are under serious threat locally as they have been exterminated and replaced with other species. Same is the case with native fish species that suffer from decline due to over exploitation, water pollution and introduction of invasive species.

The biodiversity map of project site is attached as Annex II.

5.3.1.2. Vegetables

A large number of vegetables are grown in the study area. Some important of these are Phool Gobhi/cauliflower (Brassica oleracea Ver. Botrytis), Band Gobhi (Brassica oleracea Ver. capitate) Turnip, Raddish (Raphanus sativus), Carrot (Daucus carota), Bhindi, Tomato (Lycopersicum esculentum), Vegetable Marrow (Cucurbita pepo), Baingan etc.

5.3.1.3. Crops and Fodder

Crops usually seeded in the area include Rice, Barley (Hordeum vulgare), Jawar (Andropogon sorghum), Maize and Sugarcane along with other fodder. Wheat crop was also identified sown on the project site.

5.3.1.4. Wildlife Sanctuaries and Game Reservoirs

No wild life sanctuary or game reservoir is located in the vicinity of the project area.
5.3.1.5. Rare or Endangered Species

Many birds and reptile species of the project area were found to be protected as they were either under threat as per IUCN Red list (1 bird and 2 reptile species) or were protected under Punjab Wildlife Act (22 bird and 6 reptile species). One bird (*Otus bakkamoena*) and 5 reptile species (*Ptyas mucosa, Xenochrophis piscator, Varanus bengalensis, Pangshura smithii* and *Lissemys punctata Adersoni*) are protected either under CITES appendix I, II or III. Two mammal species (*Felis chaus* and *Herpestes mungo*) are also protected under Punjab Wildlife Act. Among fish species Mully (*Wallago attu*) is ‘near threatened’ in IUCN Red Data Lists but there are other fish species like *Rita rita* (Ravi Khagga) that also suffer from serious threat and decline due to over exploitation, water pollution and introduction of invasive species.

5.4. Air Quality

At present, major sources of air pollution are industrial and mobile sources. Other sources of ambient air pollution are the generators in industrial and commercial units for alternative power supply sources.

Ambient air quality was monitored in accordance with PAK-NEQS at 16 locations in whole project site in order to access the overall air quality of project site. The map of Air Quality monitoring is given in Annex-IV.

The ambient air monitoring was carried at identified locations for period of 24 hours in accordance with the PAK-NEQS. The monitored parameters included Carbon mono-oxide (CO), Nitrogen dioxide (NO2), Sulphur dioxide (SO2), Particulate Matter (PM10) and Particulate Matter (PM2.5). The results of ambient air are given in Appendix II.

The overall quality of ambient air at most of the location is good except particulate matter which is higher at road sides. All samples taken at road side have found high values of PM.

5.5. Noise Levels

Number of sources of noise emission has been detected in the study area. These sources are

- Vehicular Traffic in Project Area
Chapter 5: DESCRIPTION OF BASELINE ENVIRONMENT

- Due to Operation of Industrial Activities
- Due to operation of Generators in Commercial Activities
- Due to operation of pumping & disposal stations

Noise levels were monitored at 16 locations in whole project boundary. The noise monitoring map is given in Annex IV while results are attached as Appendix II

The results shows that the noise levels on all major roads are much higher than NEQS but the noise levels are in compliance in villages and settlements

5.6. Socio Economic Environment

Socio-economic studies focus mainly on demography, occupation, education, housing, health, family income and expenditure, basic amenities, land use, livestock, resettlement concerns, industry, archaeology, tourism, land values, role of women etc. The socio economic baseline data was collected from field surveys conducted from November, 2015 to December, 2015 and previous secondary surveys.

Household and Population: The field surveys conducted in the Project Area and data collected from the relevant agencies indicate that there is 1 million population in the project area with total built up area 46,365.7 acres.

Villages/Towns in Project Area: 135 villages/towns have been identified in project area, out of which 16 villages/towns fall in Lahore District, 17 villages fall in Tehsil Muridkey, Ferozawala and Sheikhupura of Sheikhupura District, 9 villages/towns fall in District Nanakana Sahib and remaining 91 villages/towns fall in District Kasur. The detail of the survey villages/towns, and population is shown in table 5-9 below:

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>DISTRICT</th>
<th>TEHSIL/TOWN</th>
<th>VILLAGE/SETTLEMENT</th>
<th>POPULATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Lahore</td>
<td>Lahore South East</td>
<td>Keet</td>
<td>1300</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Srach</td>
<td>2500</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Badarpur</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Khano harni</td>
<td>4000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mala Ram</td>
<td>2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Saya Asal</td>
<td>2500</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Asal</td>
<td>2500</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Jham</td>
<td>1250</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bado Ki</td>
<td>1250</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Asal Suleman</td>
<td>1300</td>
</tr>
</tbody>
</table>

Table 5.4 Detail of the Survey Villages
Chapter 5: DESCRIPTION OF BASELINE ENVIRONMENT

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>DISTRICT</th>
<th>TEHSIL/TOWN</th>
<th>VILLAGE/SETTLEMENT</th>
<th>POPULATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>Khand</td>
<td>2500</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chak Bota</td>
<td>3000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Watna</td>
<td>1300</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Geabaga</td>
<td>1600</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Jalalpura</td>
<td>1350</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Jodhath</td>
<td>3500</td>
</tr>
<tr>
<td>2.</td>
<td>Sheikhupura</td>
<td>Muridke</td>
<td>Ferozwala</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tetli</td>
<td>6000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sekham</td>
<td>4000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sachsoda</td>
<td>15000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Kot Sondo</td>
<td>10000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sheikhupura / Farooq Abad</td>
<td>Paday</td>
<td>12000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Kamyarpura</td>
<td>13000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bando ki</td>
<td>12000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Asoirkky</td>
<td>10000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Warn</td>
<td>17000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chanke</td>
<td>14000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Kange</td>
<td>12000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Kugar</td>
<td>16000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Butterh</td>
<td>13000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chack 523</td>
<td>10000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chack 560</td>
<td>10000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sheikhupura / Nawan Kot</td>
<td>Nawan Kot</td>
<td>30000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kasur</td>
<td>Pattoki / Pattoki Phatak</td>
<td>Mindian wala</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Purani Mandi Pattoki</td>
<td>2500</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fraz Colony</td>
<td>3500</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tor kot</td>
<td>2250</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Adan</td>
<td>3400</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Partab Garh</td>
<td>1600</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Waan khara</td>
<td>1850</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Doba Pind</td>
<td>3000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fareeda Kot</td>
<td>4000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Narwaki</td>
<td>3400</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Malan Wala</td>
<td>3300</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kasur</td>
<td>Sachak Dholan</td>
<td>2400</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gheen</td>
<td>3200</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Doaki</td>
<td>2700</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Khrepar Sharif</td>
<td>3500</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ghanjian Wala</td>
<td>3600</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Teelann</td>
<td>4500</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Muhammad Din Kot</td>
<td>3500</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bheedian</td>
<td>4500</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pattoki / Phool Nagar Road</td>
<td>Lambay Jageer</td>
<td>10000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mega</td>
<td>4000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Kamorkal</td>
<td>5400</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Auuulakh</td>
<td>6700</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Baloki</td>
<td>8000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Jalleki</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sarnaki</td>
<td>6000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Shair Pur</td>
<td>4500</td>
</tr>
</tbody>
</table>
Chapter 5: DESCRIPTION OF BASELINE ENVIRONMENT

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>DISTRICT</th>
<th>TEHSIL/TOWN</th>
<th>VILLAGE/SETTLEMENT</th>
<th>POPULATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ghumnaki</td>
<td>6000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Barmake</td>
<td>3500</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Boonga</td>
<td>7000</td>
</tr>
<tr>
<td></td>
<td>Pattoki / Jamber Road</td>
<td>Chalian</td>
<td>Kot Naka Singh</td>
<td>4500</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chakoki</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>Kasur / Mustafabad</td>
<td>Mustafabad main</td>
<td>Kot Radha Kishan</td>
<td>10000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nawi Basti</td>
<td>12000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Phalntar</td>
<td>3600</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nawi Abadi</td>
<td>7000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Kot Akbar Abadi</td>
<td>12000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dhosari</td>
<td>12000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Thathi Pind</td>
<td>4000</td>
</tr>
<tr>
<td></td>
<td>Kasur</td>
<td>Kasur</td>
<td>Kasur</td>
<td>150000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hera kot</td>
<td>20000</td>
</tr>
<tr>
<td></td>
<td>Kasur</td>
<td>Kasur</td>
<td>Ghulam Muhammad khan kot</td>
<td>15000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Phetu wala kot</td>
<td>10000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Committee Ghar chck</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Murad kot</td>
<td>30000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bulleh Shah</td>
<td>10000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Railway Road</td>
<td>10000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Usman khan raod</td>
<td>10000</td>
</tr>
<tr>
<td></td>
<td>Kasur/Khuddan Khas</td>
<td>Khaca pacca</td>
<td>Islam pura</td>
<td>7000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Draz shah</td>
<td>65000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nawab shah</td>
<td>7500</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tahil pura</td>
<td>6000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Adah wala</td>
<td>35000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Anwar wala</td>
<td>35000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pillow wadana</td>
<td>40000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Paki hawali</td>
<td>40000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sand a klan</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dholan</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bhigpur</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Khai</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nandan pura</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ding shan</td>
<td>700</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rail chala</td>
<td>400</td>
</tr>
</tbody>
</table>
Chapter 5: DESCRIPTION OF BASELINE ENVIRONMENT

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>DISTRICT</th>
<th>TEHSIL/TOWN</th>
<th>VILLAGE/ SETTLEMENT</th>
<th>POPULATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cher kot</td>
<td></td>
<td></td>
<td>700</td>
</tr>
<tr>
<td>2</td>
<td>Bgaban pura</td>
<td></td>
<td></td>
<td>900</td>
</tr>
<tr>
<td>3</td>
<td>Saad</td>
<td></td>
<td></td>
<td>300</td>
</tr>
<tr>
<td>4</td>
<td>Rakh wala</td>
<td></td>
<td></td>
<td>200</td>
</tr>
<tr>
<td>5</td>
<td>Nain wala</td>
<td></td>
<td></td>
<td>210</td>
</tr>
<tr>
<td>6</td>
<td>Said sad</td>
<td></td>
<td></td>
<td>230</td>
</tr>
<tr>
<td>7</td>
<td>Wiran gaggia</td>
<td></td>
<td></td>
<td>250</td>
</tr>
<tr>
<td>8</td>
<td>Noor pura</td>
<td></td>
<td></td>
<td>175</td>
</tr>
<tr>
<td>9</td>
<td>Todho wala</td>
<td></td>
<td></td>
<td>200</td>
</tr>
<tr>
<td>10</td>
<td>Fakeer wala</td>
<td></td>
<td></td>
<td>350</td>
</tr>
<tr>
<td>11</td>
<td>Doholy wala</td>
<td></td>
<td></td>
<td>170</td>
</tr>
<tr>
<td>12</td>
<td>Nankana Sahib</td>
<td>Nankana Sahib</td>
<td>Mandi Faizabad</td>
<td>2500</td>
</tr>
<tr>
<td>13</td>
<td>Syed Wala</td>
<td></td>
<td></td>
<td>2000</td>
</tr>
<tr>
<td>14</td>
<td>Bucheki</td>
<td></td>
<td></td>
<td>4000</td>
</tr>
<tr>
<td>15</td>
<td>Nankana Sahib</td>
<td></td>
<td></td>
<td>5500</td>
</tr>
<tr>
<td>16</td>
<td>More Khundal</td>
<td></td>
<td></td>
<td>3000</td>
</tr>
<tr>
<td>17</td>
<td>Warburton</td>
<td></td>
<td></td>
<td>4000</td>
</tr>
<tr>
<td>18</td>
<td>Shah Kot</td>
<td>Shah kot-I</td>
<td></td>
<td>12000</td>
</tr>
<tr>
<td>19</td>
<td>Shah kot-II</td>
<td>Shah kot-II</td>
<td></td>
<td>1500</td>
</tr>
<tr>
<td>20</td>
<td>Sangla Hill</td>
<td>Sangla Hill</td>
<td></td>
<td>7000</td>
</tr>
<tr>
<td>21</td>
<td>Total population</td>
<td></td>
<td></td>
<td>994085</td>
</tr>
</tbody>
</table>

Health: The survey indicates out of 135 villages there are 17 Private & Public Hospitals and 10 basic health units in Project area, 120 private practitioners (not qualified doctors but dispensers, quakes, etc) are practicing as health facility provider in different villages.

Table 5.5 Available Health Facilities

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Name of Facility</th>
<th>No. of Health Facility</th>
<th>Percentage %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Basic Health Unit (BHU)</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>Hospital</td>
<td>20</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>Private Practitioner</td>
<td>120</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>150</td>
<td>100</td>
</tr>
</tbody>
</table>
Education: Survey indicates that, out of 135 villages/towns 90 % villages/towns have education facility from primary to higher secondary levels. There is one Veterinary university present in the project area. In 10% villages, there is no educational facility, even at primary school level. The parents have to send their children to the nearest village where school is available. Girl’s schools are far less than schools for boys in the project area. Therefore, it is difficult for the girls to having access to educational institution. Traveling long distance to access the school for girls is the main cause of illiteracy.

Table 5.6 Availability of Educational Facility

<table>
<thead>
<tr>
<th>Education Facility</th>
<th>Villages/Towns</th>
<th>Percentage %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Available</td>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td>Available</td>
<td>122</td>
<td>90</td>
</tr>
<tr>
<td>Total</td>
<td>135</td>
<td>100</td>
</tr>
</tbody>
</table>

Available Health Facilities
Electricity: It is evident from the survey results that 97% villages/towns have electricity facility, whereas 3% villages do not have the facility of electricity. The villages/towns, where electricity facility is not available, people use kerosene oil as a source of light.

<table>
<thead>
<tr>
<th>Electricity</th>
<th>Villages/Towns</th>
<th>Percentage %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Available</td>
<td>131</td>
<td>97</td>
</tr>
<tr>
<td>Not Available</td>
<td>04</td>
<td>03</td>
</tr>
<tr>
<td>Total</td>
<td>135</td>
<td>100</td>
</tr>
</tbody>
</table>

Natural Gas Supply: The survey reveals that only 27% villages/towns of the total project area are enjoying the natural gas facility provided by government; while, significant number of villages (73%) have to use wood or gas cylinders for fuel purpose.

<table>
<thead>
<tr>
<th>Natural Gas Supply</th>
<th>Villages/Towns</th>
<th>Percentage %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Available</td>
<td>37</td>
<td>27</td>
</tr>
<tr>
<td>Not Available</td>
<td>98</td>
<td>73</td>
</tr>
<tr>
<td>Total</td>
<td>135</td>
<td>100</td>
</tr>
</tbody>
</table>
Telephone Facility: Most of the people use mobile telephone facility; however, the availability of landline telephone facility in the surveyed villages indicates that 70% villages have telephone facility and 30% villages do not have telephone facility. In 30% villages where telephone facility is not available, the only option is to use mobile phones; however the signal strength is weak for mobile phones in these areas.

Table 5.9 Availability of Landline Telephone Facility

<table>
<thead>
<tr>
<th>Telephone</th>
<th>Villages/Towns</th>
<th>Percentage %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Available</td>
<td>94</td>
<td>70</td>
</tr>
<tr>
<td>Not Available</td>
<td>41</td>
<td>30</td>
</tr>
<tr>
<td>Total</td>
<td>135</td>
<td>100</td>
</tr>
</tbody>
</table>

Transport: The survey results indicate that people of 58% villages have access on public transport e.g. bus, van and Rickshaw (Chingchi) etc for traveling purpose. The
remaining 42% villages do not have public transport and they use private transport such as Motor Car, Motor Cycle, Bicycle or travel by foot.

Table 5.10 Availability of Transport Facility

<table>
<thead>
<tr>
<th>Public Transport</th>
<th>Villages/towns</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
</tr>
<tr>
<td>Available</td>
<td>78</td>
</tr>
<tr>
<td>Not Available</td>
<td>57</td>
</tr>
<tr>
<td>Total</td>
<td>135</td>
</tr>
</tbody>
</table>

Access Roads: Survey results indicates that a large number of the villages/towns have either soling (27%) or katcha (21%) roads/track. 10% villages have only Metalled roads. Furthermore, 42% of the villages have mixed types of roads.

Table 5.11 Types of Roads Available to Villages/Towns

<table>
<thead>
<tr>
<th>Type of Road</th>
<th>Villages/Towns</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
</tr>
<tr>
<td>Metalled</td>
<td>14</td>
</tr>
<tr>
<td>Solling</td>
<td>36</td>
</tr>
<tr>
<td>Katcha</td>
<td>29</td>
</tr>
<tr>
<td>Mixed types of Roads</td>
<td>56</td>
</tr>
<tr>
<td>Total</td>
<td>135</td>
</tr>
</tbody>
</table>
Bank Facility: The survey reveals that Bank facility is available in only 20% village/towns of the project area; whereas, in 80% villages this facility is not available. Where this facility is not available, residents have to travel long distances to access the facility to the nearest urban commercial centers.

Table 5. 12 Availability of Bank Facility

<table>
<thead>
<tr>
<th></th>
<th>Villages/Towns</th>
<th>Percentage %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Available</td>
<td>27</td>
<td>20</td>
</tr>
<tr>
<td>Not Available</td>
<td>108</td>
<td>80</td>
</tr>
<tr>
<td>Total</td>
<td>135</td>
<td>100</td>
</tr>
</tbody>
</table>

Post Office: Survey results indicated that 20% villages have Post Office facility at their door step; while, (80%) villages do not have this facility. The residents of the villages, where the facility is not available, have to travel long distance to reach the nearest post office.
Chapter 5: DESCRIPTION OF BASELINE ENVIRONMENT

Table 5.13 Post Office Facility

<table>
<thead>
<tr>
<th>Post Office</th>
<th>Villages/Towns</th>
<th>Percentage %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Available</td>
<td>27</td>
<td>20</td>
</tr>
<tr>
<td>Not Available</td>
<td>108</td>
<td>80</td>
</tr>
<tr>
<td>Total</td>
<td>135</td>
<td>100</td>
</tr>
</tbody>
</table>

Post Office Facility

- Available: 20%
- Not Available: 80%

Domestic Water Supply: An easy access to potable / safe drinking water is one of the basic human rights and needs. Survey indicates that the residents of the total project area are deprived of tapped water supply system; only 2% people have this facility. Most of the population of project area (94%) use both hand pumps and electric motor pumps to extract ground water for domestic water usage. There are only 4% of villages where extraction of ground water is being carried out only through hand pumps.

Table 5.14 Domestic Water Supply System

<table>
<thead>
<tr>
<th>Water Supply System</th>
<th>Villages/Towns</th>
<th>Percentage %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tapped Water Supply, Electric Motors and Hand Pumps</td>
<td>3</td>
<td>02</td>
</tr>
<tr>
<td>Electric Motors and Hand Pumps</td>
<td>127</td>
<td>94</td>
</tr>
<tr>
<td>Hand Pumps only</td>
<td>5</td>
<td>04</td>
</tr>
<tr>
<td>Total</td>
<td>135</td>
<td>100</td>
</tr>
</tbody>
</table>
Sewerage System: Proper sewerage system is not available in the project villages. However, the local residents use small open drains and septic tanks system made by them.

5.6.1. Archaeological and Historical Monuments/Sites
Mosques: Survey indicates that 97% of villages have mosques while non-availability in only 3% villages.

Table 5. 15 Available Mosques in Project Area

<table>
<thead>
<tr>
<th>Mosque</th>
<th>Villages/Towns</th>
<th>Percentage %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Available</td>
<td>131</td>
<td>97</td>
</tr>
<tr>
<td>Not Available</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>135</td>
<td>100</td>
</tr>
</tbody>
</table>
Graveyards: 90% villages have graveyard out of total 135 surveyed villages. However, 10% villages do not have graveyards.

Table 5.16 Graveyards in Project Area

<table>
<thead>
<tr>
<th>Graveyard</th>
<th>Villages/Towns</th>
<th>Percentage %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Available</td>
<td>121</td>
<td>90</td>
</tr>
<tr>
<td>Not Available</td>
<td>14</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td>135</td>
<td>100</td>
</tr>
</tbody>
</table>

Shrines: 75% villages have shrines whereas, 25% villages do not have shrines.

Table 5.17 Shrines in Project Area

<table>
<thead>
<tr>
<th>Shrines</th>
<th>Villages/Towns</th>
<th>Percentage %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Available</td>
<td>101</td>
<td>75</td>
</tr>
<tr>
<td>Not Available</td>
<td>34</td>
<td>25</td>
</tr>
<tr>
<td>Total</td>
<td>135</td>
<td>100</td>
</tr>
</tbody>
</table>
Irrigation System: Study revealed that 52% Villages/Towns depend upon tube well (ground water) for irrigation purpose and 48% Villages/Towns use canal water for their agriculture lands. Multiple Responses were recorded in each village due to availability of more than one option.

Table 5.18 Irrigation System Usage in Project Area

<table>
<thead>
<tr>
<th>Irrigation System</th>
<th>Percent %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canal</td>
<td>48</td>
</tr>
<tr>
<td>Tube well</td>
<td>52</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
</tr>
</tbody>
</table>

Housing Structures: Housing characteristics of the population indicate the living condition and social well-being. Survey indicates that 93.6% of the houses of the selected households in the Project Area are Pucca, while 2.4% are Katcha, and 4%
are Semi-Pacca. During the field visit, the katcha housing pattern was only observed in the proposed urban areas of few villages of Kala Kaiti road.

Table 1.16: Table Housing Structures

<table>
<thead>
<tr>
<th>Housing Structures</th>
<th>Percentage %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pucca</td>
<td>93.6</td>
</tr>
<tr>
<td>Katcha</td>
<td>2.4</td>
</tr>
<tr>
<td>Semi Pacca</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
</tr>
</tbody>
</table>

Cropping Pattern and Average Yield: The major crops grown in project area are rice, Sugar cane and wheat. A few numbers of villages sow vegetables (Potato, Onion, Carrot, Radish, Peas, Pumpkin, Bringle etc.) and Orchards of Illaichi & Guava were also observed in project area. The average yield of major crops in project area is 40 to 45 (maunds) per acre for each crop. The data contains multiple responses because every village produces number of crops.

Solid Waste Disposal: Solid waste disposal is another key problem being faced by the population of the Project Area. Only a few localities have the facility of filth depot, while a majority of the population of the Project Area throws the solid waste of their houses in vacant plots, into River drains/nullahs and in streets also.
Language Spoken: Main languages spoken in the Project Area is Punjabi. While only few people speak Urdu due to it is the official language. Few Pashto speaking people were also found and consulted in the Project Area.

Settlements Pattern: The settlement pattern of the Project Area has a mixed origin i.e. urban, semi-urban and rural. Few areas of Lahore, Sheikupura, Kasur and Nankana districts are urban or semi urban such as Farooqabad, Nawakot and ferozwala etc. Large number of all types of industries small, medium and large scale exist within and outside the project Area.

Sex Ratio: According to the survey 53 % population in the project area are male while 47 % are the female.
6.1. General

This chapter identifies the identified potentially significant environmental and social impacts which are likely to arise due to the proposed intervention on the physical, ecological and socio-cultural environment of the Project Area as well as Study Area. Proposed project has three main stages i.e. planning, implementation development and operation. This chapter also identifies and suggests practically possible and economically viable mitigation and remedial measures that will help to avoid, reduce or compensate the identified potentially significant adverse environmental and social impacts and enhancement of the potential benefits of the Master Plan.

6.2. Methodology

The subject Project is a landuse planning Project. For the landuse planning Projects, a conventional EIA is not prepared rather a strategic environmental assessment (SEA) is required. SEAs require more time and adopt complex methodologies to identify the policy level issues. As per Punjab Environmental Protection Act, 1997 (As amended 2012) does not has any provision for the SEA therefore, a composite methodology based on the conventional EIA and the SEA were utilized to identify project level impacts as well as the policy level issues was adopted. These are elaborated below:

Screening Checklist

Based on the findings of desk studies, processed satellite imageries of google Earth, a screening checklist for the impacts was prepared to screen out the potentially significant and non-significant impacts of the proposed amendment in the Master Plan on physical, ecological and socio-economic environment. After the completion
of field visits, compilation of baseline information, processing of acquired satellite imagery, the Screening checklist was filled in to screen out the major and insignificant impacts of the proposed intervention with project option, during the construction stage without mitigation of the project, during the operational stage without mitigation and during construction stage with mitigation and during operation stage with mitigation. The filled in screening checklist is given below:

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Main Environment Parameters</th>
<th>Baseline Conditions</th>
<th>With Project</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Planning without Mitigation</td>
<td>Development without Mitigation</td>
</tr>
<tr>
<td>1</td>
<td>Atmosphere</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>Ambient Air</td>
<td>0</td>
<td>--</td>
</tr>
<tr>
<td>b</td>
<td>Primary Pollutants</td>
<td>0</td>
<td>--</td>
</tr>
<tr>
<td>c</td>
<td>Secondary Pollutants</td>
<td>0</td>
<td>--</td>
</tr>
<tr>
<td>d</td>
<td>Noise</td>
<td>0</td>
<td>--</td>
</tr>
<tr>
<td>e</td>
<td>Vibration</td>
<td>0</td>
<td>--</td>
</tr>
<tr>
<td>2</td>
<td>Climate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>Temperature</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>b</td>
<td>Precipitation</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>c</td>
<td>Relative Humidity</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>e</td>
<td>Evaporation</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Water Resources</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>Surface Water</td>
<td>-</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Rivers</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Wetland</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Flow</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Quality</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Usage</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Sediments</td>
<td>-</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Pollution</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sr. No.</td>
<td>Main Environment Parameters</td>
<td>Baseline Conditions</td>
<td>With Project</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------------------</td>
<td>--------------------</td>
<td>--------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Planning without Mitigation</td>
<td>Development without Mitigation</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Erosion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Ground Water</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Sources</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>Depth</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>Quantity</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>Potential Extraction</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>Usage</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>Domestic Supply</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>Industrial Water Supply</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>Irrigation</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>Quality</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>Land Resources</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Topography</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>Soil</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>Major Land use</td>
<td>0</td>
<td>--</td>
</tr>
<tr>
<td>17</td>
<td>Natural Biological Environment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Terrestrial Ecology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Flora</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>20</td>
<td>Fauna</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>21</td>
<td>Aquatic Ecology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Aquatic Flora</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>23</td>
<td>Aquatic Fauna</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>24</td>
<td>Fisheries</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>25</td>
<td>Wildlife</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>26</td>
<td>Forestry</td>
<td>-</td>
<td>--</td>
</tr>
<tr>
<td>27</td>
<td>Beneficial Plants and</td>
<td>-</td>
<td>--</td>
</tr>
</tbody>
</table>
Chapter 6: SCREENING OF POTENTIAL ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Main Environment Parameters</th>
<th>Baseline Conditions</th>
<th>Without Mitigation</th>
<th>With Project</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Planning</td>
<td>Development</td>
<td>Planning</td>
</tr>
<tr>
<td>f</td>
<td>Endangered Species</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
</tbody>
</table>

6 Socio-economic Environment

<table>
<thead>
<tr>
<th></th>
<th>Institutional and Administrative Setup</th>
<th>+</th>
<th>+</th>
<th>+</th>
<th>++</th>
<th>++</th>
</tr>
</thead>
<tbody>
<tr>
<td>b Demography</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>c Gender issues</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>d Social Equity</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>e Settlement Patterns</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>++</td>
<td>++</td>
<td></td>
</tr>
<tr>
<td>f Land Holdings & Titling</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>++</td>
</tr>
<tr>
<td>g Common Resource Rights</td>
<td>0</td>
<td>--</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>h Fish</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>i Wood</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>j Grazing</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>k Fodder</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>l Domestic Energy and Fuel</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>m Domestic Water Supply</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>n Sanitation</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>O Health</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>P Waterborne Disease</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Q Common Diseases</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>R Mental Health</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>S Human Nutrition</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>T Education & Literacy</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>++</td>
<td>++</td>
<td></td>
</tr>
</tbody>
</table>
Amendment in Master Plan for Lahore Division (The Project)

Environmental Impact Assessment (EIA) Report

Chapter 6: SCREENING OF POTENTIAL ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Main Environment Parameters</th>
<th>Baseline Conditions</th>
<th>With Project</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Planning without Mitigation</td>
<td>Development without Mitigation</td>
</tr>
<tr>
<td>U</td>
<td>Cultural & Historical Sites</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>V</td>
<td>Religious Sites</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>W</td>
<td>Aesthetics</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>X</td>
<td>Landscape</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Y</td>
<td>Livelihood</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>z</td>
<td>Agriculture</td>
<td>0</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Livestock</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Forestry</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Fisheries</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Industry</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Other Cash Income</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>7</td>
<td>Transport, Infrastructure & Communication</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>Roads</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>Tracks</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>c</td>
<td>Bridges</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>d</td>
<td>Pedestrian Tracks</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>e</td>
<td>Navigation</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>f</td>
<td>Energy and Power</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>g</td>
<td>Telecommunication</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>Natural Risks and Hazards</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Earthquake</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Landslides</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Storms</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Floods</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Chapter 6: SCREENING OF POTENTIAL ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

Table 6.1: Impacts screening checklist

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Main Environment Parameters</th>
<th>Baseline Conditions</th>
<th>With Project</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Planning</td>
<td>Development</td>
</tr>
<tr>
<td></td>
<td></td>
<td>without Mitigation</td>
<td>without Mitigation</td>
</tr>
<tr>
<td>1</td>
<td>Erosion</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Drought</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Human Disease</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Pollution</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>Social Instability</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>Economic Instability</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>7</td>
<td>Political Instability</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>District Boundaries</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>Distance from Lahore District</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>Current Landuse</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>Growth Trends</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>

Adverse Impact -, Significant Adverse--, Beneficial Impact+, Highly Beneficial ++, No Impact 0

Impact Matrix

Matrix methods identify interactions between the various project actions and environmental parameters and components. These incorporate a list of project activities with a checklist of the environmental components that might be affected by these activities. A matrix of potential interactions is produced by combining these two lists (placing one on the vertical axis and the other on the horizontal axis).

Matrices require information about both the environmental components and the project activities. The cells of the matrix are filled in using subjective (expert) judgment, or by using extensive data bases. Significance or importance-rated
methods require either more extensive data bases or more experience to prepare. Values assigned to each cell in the matrix are based on scores or assigned ratings, not on the measurement and experimentation. Significance or importance of the impacts are categorized (insignificant impact, significant impact, or uncertain). Alternatively, it may be assigned a numerical score (for example, 0 is no impact, 10 is maximum impact).

Impact matrix for the proposed dam was prepared by placing the project activities on y-axis and placing the major environmental parameters from the screening checklist on X-axis. Separate impact matrices were prepared for the each proposed site which were later consolidated to prepare one comprehensive matrix.

Overlays

In order to identify spatial based impacts of the amendment in the Master Plan of Lahore, overlays were used. An overlay is based on a set of transparent maps, each of which represents the spatial distribution of an environmental characteristic (for example, susceptibility to erosion).

Existing landuse map of the each proposed site was prepared based on the available Google Earth Imagery and using Arc GIS software. Some information from the Survey of Pakistan (SOP), GT sheets was also utilized. GT sheets of the four (4) districts involved in the project were obtained and digitized and geo-referenced. This information was also overlaid on the available processed GIS maps. Based on these maps, existing landuse of the proposed Project sites were developed.

Information for an array of variables is collected for the standard geographical units within each proposed Project site and recorded on a series of maps, typically one for each site.

Similarly, series of GIS maps delineating the proposed landuse allocations were also prepared for the sites. These maps are overlaid over the planned landuse to produce a composite map. The resulting composite maps characterize the area’s physical, social, ecological, land use and other relevant characteristics, relative to the location of the proposed development.
Analyses of biodiversity and ecosystems

This instrument is very important in assessing the impacts on the biodiversity and ecosystems due to landuse planning, since, it relays on the approximate assessment methods and carries out systematic assessment of the potential impacts on the biodiversity and ecosystems based on the broader level or policy level assessment. Based on the available time and resources this analysis was carried out the find out any potential policy level issues to be addressed through policy making which shall be taken up this stage of the Project. Method allows assessing the conditions of sustainable utilization of natural resources. Since the biodiversity and ecosystem cannot be bound by delineating the physical boundaries as proposed in the amendment of Master Plan by identifying various sites, the whole Lahore division was considered as a Study Area. Based on the analysis whole area was divided into various habitat zones. These zones were studies with respect to the proposed landuses and impacts on the biodiversity and ecosystems were identified, assessed and policy level mitigation were suggested.

6.3. Approach Adopted for Impacts Identification and Mitigation Measures

The proposed Project is at the planning stage and topographic survey and detailed design for all the proposed facilities has to be carried out at later stages. To identify the potentially significant adverse environmental and social impacts checklists, matrices and overlays were used

Impact Identification

In this regards, initially checklist method was used to screen out the potentially significant and insignificant impacts. Checklist was developed for physical, ecological and socio-cultural environment by the experts keeping in view the type of existing uses, future trends without proposed intervention and with proposed intervention based on the critical parameters related to the land use and other infrastructure utilities and facilities in the Project Area.

After the initial screening of impacts through checklists, matrices were used to evaluate the temporal based potentially significant environmental and social impacts
of the proposed Project. The Impact Evaluation Matrix was developed by placing project activities along one axis (i.e. Y-axis), and on the other axis (i.e., X-axis) the different environmental parameters likely to be affected by the proposed project actions grouped into categories i.e. physical, ecological and socio-economic environment. For the impact assessment, project impact evaluation matrix is used by dividing the project action into different project phases i.e. planning, development and operation.

In order to identify the spatial based (location based) impacts, overlays are used. An overlay is based on a set of transparent maps each of which represents the spatial distribution of environmental characteristics (for example land use changes from agriculture to residential, floods etc.). Information for an array of variables is collected for the standard geographical units within the Project Area and recorded in a series of maps typically one for each parameter. These maps are overlaid to produce a composite map. The resulting composite maps characterize the area’s physical, ecological, socio-economic and other relevant characteristics relative to the location of the proposed Project. Software used for the overlays are Arc View and AUTOCAD. For the subject Project digitized available Google Earth Imageries and ARC GIS was used to prepared overlay maps.

In addition to this, estimation through project stages was another tool which was used to identify the impacts. For impact assessment, Lahore Division area under the jurisdiction of the LDA was considered as Study Area due to the reasons that almost all the project activities have to be carried out within this area. The Project Area is the sites selected for the Master Planning within the Lahore Division. All in all there are total 48 sites located in Lahore, Kasur, Sheikhupure and Nankanasahid districts. Map of Study Area including the Project Area is shown in Figure 5-1.

Mitigation Measures

A three-step process of mitigation was adopted for the proposed Master Plan, based on the hierarchy of elements into the stages of the EIA process when they are typically applied. Generally, as project design becomes more detailed, the opportunities for impact avoidance narrow and the concern are to minimize and compensate for unavoidable impacts. However, these distinctions are not rigid and
opportunities for creative mitigation should be sought at all stages of EIA and project planning.

Impact avoidance.

This step is most effective when applied at an early stage of project planning. It can be achieved by:

- not undertaking certain projects or elements that could result in adverse impacts;
- avoiding areas that are environmentally sensitive; and
- putting in place preventative measures to stop adverse impacts from occurring, for example, change in alignment of the road to avoid resettlement issues.

Impact minimization.

This step is usually taken during impact identification and prediction to limit or reduce the degree, extent, magnitude, or duration of adverse impacts. It can be achieved by:

- scaling down or relocating the proposal;
- redesigning elements of the project; and
- taking supplementary measures to manage the impacts.

Impact compensation.

This step is usually applied to remedy unavoidable residual adverse impacts. It can be achieved by:

- rehabilitation of the affected site or environment, for example, by habitat enhancement and conservation of river riparian areas;
- restoration of the affected site or environment to its previous state or better, as typically required for mine sites, forestry roads and seismic lines; and
- replacement of the same resource values at another location, for example, by wetland engineering to provide an equivalent area to that lost to drainage or infill.
6.4. Positive Environmental Impacts Resulting from the Project Operation

Following are the main positive impacts are envisaged due to the implementation of the proposed projects under LDA;

- Master Planning will guide the land use trends of the Lahore Division in a manner that will ensure the sustainable use of available natural resources and utilities services.

- The infrastructure and utility services in the project areas is likely to become better than at present due to implementation and development of master plan.

- The migration from small city towards large city for better facilities will become lesser having better and improved facilities in small city.

- The implementation of the master plan will increase the employment rate with livelihood as it involves development of residential and industries areas, public administration, institutions and infrastructure facilities.

- There will be more employment opportunities, health care and educational facilities in all project areas due to the implementation of master plan.

- The implementation of master plan brings improvement in the industrial sector due to enhance space given for the industry and increase in industrial areas. The cluster of different type of industries in the industrial area will bring industrial symbiosis.

- The implementation of proposed master plan will result in promoting healthy environment in terms of the availability of safe and clean water, availability of sanitation facilities, health and education facilities.

- By the implementation of master plan the quality of life will increase due to the availability of basic facilities like health, education and road networks at their door step.
• The scenic beauty of the area may be improved in the operation phase due to the public parks and play grounds.

• Public parks & play grounds will be a major source of entertainment and recreation for the locals, which may decrease the tensions of the domestic life of the people.

• Due to implementation of master plan the living standard of women in the project area will increase due to the availability of basic facilities at their door step like health, education and easy market accessibility that ultimate helps woman to perform their daily house activities efficiently.
6.5. Environmental Analysis and Results for Individual Project Areas

6.5.1 DISTRICT LAHORE

LHR-01 Ferozpur Road & BRB

<table>
<thead>
<tr>
<th>Landuse</th>
<th>Area (Acres)</th>
<th>%age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing Built Up Area</td>
<td>5395</td>
<td></td>
</tr>
</tbody>
</table>

Proposed Land uses & Road Network of Lahore City (Site-LHR-1)
Proposed Landuse Characteristics

<table>
<thead>
<tr>
<th>Landuse</th>
<th>Area (Acres)</th>
<th>%age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed Residential area</td>
<td>34000</td>
<td></td>
</tr>
<tr>
<td>Estimated Numbers of Housings Units (By 2035)</td>
<td>340,000</td>
<td></td>
</tr>
</tbody>
</table>

Existing Population: 2380000

Required Infrastructure/ Utilities (by 2035)

<table>
<thead>
<tr>
<th>Utility</th>
<th>Estimated Per Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential Electricity (30% demand factor)</td>
<td>1020 MW</td>
</tr>
<tr>
<td>Natural Gas (219 cubic meter/c/d)</td>
<td>521220000 cubic m/year</td>
</tr>
<tr>
<td>Water (300LPCD)</td>
<td>291 Cusecs</td>
</tr>
<tr>
<td>Wastewater Production</td>
<td>232 Cusecs</td>
</tr>
<tr>
<td>Solid Waste Production (0.85kg/c/d)</td>
<td>2023 Tons/day</td>
</tr>
</tbody>
</table>

Environmental Impacts Due To Proposed Amendments at Ferozpur Road & BRB:

- The growth rate of population, progressive migration of people from the nearby areas towards the area and the establishment of numerous industries has resulted in rapid increase in water demand (291 Cusecs for residential). The continuous extraction of ground water will have negative impact on ground water aquifer which is already depleting at 2.5-3.0 feet per year.

- Movements of vehicles generate CO, NOx, Sox and PM which may detriorate the ambient air quality of the area.

- Estimated production of waste water from residential units by 2035 will be 232 Cusecs. The residential waste water have pollution load (COD-500, BOD-250 and TSS-300) which may detriorate the surface water – River Ravi water quality.

- Noise pollution will be generated from transportation and commercial zones. The average noise level generated from industrial units is 75 to 80 dBA.
Development of area leads towards rapid increase in vehicles on roads. Which if not properly managed will result in wastage of time as well as air and noise pollution. Noise pollution may result in hearing related diseases and may cause effects on local biodiversity.

- Considering population of area by 2035, the total municipal solid waste will be generated 2023 tons/day. Municipal solid waste produced from area if not managed properly, will cause aesthetic problems and also produce odor along with the spread of many diseases. Similarly, medical waste produced from medical facilities etc. if not properly managed and disposed, it can result in injury by contaminated sharp material and infection with Hepatitis B, C, and HIV etc.

- The LDA will require land acquisition for widening and improvement of the existing roads, development of bypass roads for various existing town/villages etc, development of inter town and villages roads, development of new main roads, connecting roads, accessibility roads, sewerage systems including pumping stations, disposal stations, treatment plants, development of recreational areas, public utilities, buildings, administration buildings, toll stations and weighing stations.

- The main negative impact expected from the development in this area is the loss of 34000 acres of agricultural land. Indirect negative impacts are loss of biodiversity, habitat loss and fragmentation.

- As the prime purpose of the amendments in master plan is to systemize the unplanned growth, so implementation of this plan at proposed sites will improve the socio-cultural environment. Planned development will ensure the cost effective provision of public utilities from government. It will improve the aesthetic beauty of the area and make certain the sustainable development of area.

Conclusion:

The existing land use represent an unplanned haphazard residential growth which lacks provision of basic infrastructure and amenities without any legal cover or
following any local approved plan. If the proposed amendment area remains as such then the unplanned urban growth related with increase in population will result in miserable situation with high negative impact on environment and social settings of the area. However, few impacts will be generated due to development of the area which mainly includes land acquisition, loss of 34000 acres agriculture land, generation of 232 cusecs of wastewater and 2023 tons/day of solid waste from residential area.

After the Environmental Analysis of site, it can be concluded that the proposed site is feasible for future development. Further, the implementation of the environmental mitigation measures, proper monitoring and compliance of the environmental standards/legislations will make the Project environmentally more sustainable.

PA-LHR-02 Raiwind City

Proposed Land uses & Road Network of Lahore City (Site-LHR-2)
Existing Landuse Characteristics

<table>
<thead>
<tr>
<th>Landuse</th>
<th>Area (Acres)</th>
<th>%age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing Built Up Area</td>
<td>1647</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>3173</td>
<td></td>
</tr>
</tbody>
</table>

Proposed Landuse Characteristics

<table>
<thead>
<tr>
<th>Landuse</th>
<th>Area (Acres)</th>
<th>%age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed Industrial area</td>
<td>343</td>
<td></td>
</tr>
<tr>
<td>Proposed Residential area</td>
<td>268</td>
<td></td>
</tr>
<tr>
<td>Estimated Numbers of Housings Units</td>
<td>2680</td>
<td></td>
</tr>
<tr>
<td>Estimated Numbers of Small Industrial Units</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>Estimated Numbers of Medium Industrial Units</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

Existing Population:
- Population (Expected by 2035) 18760

Required Infrastructure/ Utilities (by 2035)

<table>
<thead>
<tr>
<th></th>
<th>Estimated Per Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td></td>
</tr>
<tr>
<td>Electricity (30% demand factor)</td>
<td>08 MW</td>
</tr>
<tr>
<td>Natural Gas (219 cubic meter/c/d)</td>
<td>4108440 cubic m/year</td>
</tr>
<tr>
<td>Water (300 LPCD)</td>
<td>5.3 Cusecs</td>
</tr>
<tr>
<td>Wastewater Production</td>
<td>4.24 Cusecs</td>
</tr>
<tr>
<td>Solid Waste Production (0.85kg/c/d)</td>
<td>15 Tons/day</td>
</tr>
</tbody>
</table>

Industrial	
Electricity (100% demand factor)	6.9 MW
Natural Gas (150 cubic meter/i/d)	390000 cubic m/day
Water (10 cubic m/i/d)	61.3 Cusecs
Wastewater Production	49.0 Cusecs
Solid Waste Production	136.9 Tons/day

The proposed site based on the existing trend and existing setup has been selected for the residential and industrial areas. Accordingly, an improvement in the road...
network has also been proposed considering the future load of the traffic due to the industrial, commercial and residential activities.

Environmental Impacts Due To Proposed Amendments PA-LHR-02 Raiwind City:

- The operation of industry generates CO, NOx, Sox and PM which may deteriorate the ambient air quality of the area. The estimated carbon dioxide emissions from industry will be 374 million tones up till 2035.

- The growth rate of population, progressive migration of people from the nearby areas towards the area and the establishment of numerous industries has resulted in rapid increase in water demand (5.3 Cusecs for residential and 61 Cusecs for industrial). The continuous extraction of ground water will have negative impact on ground water aquifer which is already depleting at 2.5-3.0 feet per year.

- Estimated production of waste water from residential units by 2035 will be 4.24 Cusecs and from industrial units are 49 Cusecs. The residential waste water have pollution load (COD-500, BOD-250 and TSS-300) which may deteriorate the surface water – River Ravi water quality. The industrial waste water have pollution load (COD-1500, BOD-800 and TSS-600) which may deteriorate the surface water – River Ravi water quality.

- Considering population of area by 2035, the total municipal solid waste will be generated 15 tons/day. Municipal solid waste produced from area if not managed properly, will cause aesthetic problems and also produce odor along with the spread of many diseases. Similarly, medical waste produced from medical facilities etc. if not properly managed and disposed, it can result in injury by contaminated sharp material and infection with Hepatitis B, C, and HIV etc. From industries estimated solid waste production is 136 tons/day. This can cause severe public as well as environmental health issues if not properly disposed.

- Noise pollution will be generated from transportation and industrial zones. The average noise level generated from industrial units is 75 to 80 dBA. Noise
pollution may results in hearing related diseases and may causes effects on local biodiversity. Development of area leads towards rapid increase in vehicles on roads. Which if not properly managed will result in wastage of time as well as air and noise pollution.

- The LDA will require land acquisition for widening and improvement of the existing roads, development of bypass roads for various existing town/villages etc, development of inter town and villages roads, development of new main roads, connecting roads, accessibility roads, sewerage systems including pumping stations, disposal stations, treatment plants, development of recreational areas, public utilities, buildings, administration buildings, toll stations and weighing stations.

- The main negative impact expected from the development in this area is the loss of 620 acres of agricultural land. Indirect negative impacts are loss of biodiversity, habitat loss and fragmentation.

- As the prime purpose of the amendments in master plan is to systemize the unplanned growth, so implementation of this plan at Proposed sites will improve the socio-cultural environment. Planned development will ensure the cost effective provision of public utilities from government. It will improve the esthetic beauty of the area and make certain the sustainable development of area.

Conclusion:

As already mentioned that the above the proposed site is being used for the industrial and residential purpose without any planning or following any development plan as per the local government rules. Therefore, the existing industrial and residential areas lacks proper provision of the basic infrastructure and facilities. Most of the area lacks proper sewerage system and drains. Hence the area is exploiting the resources and creating pollution and unhygienic conditions for the residents as well as the workers working in the illegally setup industries.

If the proposed amendment area remains as such then the unplanned urban growth related with increase in population will result in miserable situation with high negative impact on environment and social settings of the area. However, few impacts will be
generated due to development of the area which mainly includes land acquisition, loss of 620 acres agriculture land, generation of 5.3 cusecs of wastewater and 15 tons/day of solid waste from residential area, generation of 49 cusecs of wastewater and 61.3 tons/day of solid waste from industrial area uptill 2035. The green house gasses estimated CO2 equivalent emissions from industrial area will be 374 million tones uptill 2035. After the Environmental Analysis of site, it can be concluded that the proposed site is feasible for future development. Further, the implementation of the environmental mitigation measures, proper monitoring and compliance of the environmental standards/legislations will make the Project environmentally more sustainable.

PA- LHR 03 (Chunia Industrial Estate)

Current Population (2015) -

Proposed Population (2035) 105000

Total Area of Site 26500 Acres

Area Proposed for Amendment 26500 Acres
Proposed Agriculture

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td>1500</td>
</tr>
<tr>
<td>Industrial</td>
<td>5500</td>
</tr>
</tbody>
</table>

Required Infrastructure/ Utilities (by 2035)

<table>
<thead>
<tr>
<th></th>
<th>Estimated Per Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td></td>
</tr>
<tr>
<td>Estimated Number of Housing Units</td>
<td>15000</td>
</tr>
<tr>
<td>Electricity (based on 30% demand factor)</td>
<td>45 MW</td>
</tr>
<tr>
<td>Natural Gas (based on 219 cubic meter/c/y)</td>
<td>22995000 cubic m/year</td>
</tr>
<tr>
<td>Water (based on 300LPCD)</td>
<td>0.18 Cusecs</td>
</tr>
<tr>
<td>Wastewater Production</td>
<td>0.144 Cusecs</td>
</tr>
<tr>
<td>Solid Waste Production</td>
<td>1.2 Tons/day</td>
</tr>
</tbody>
</table>

Industrial	
Estimated Number of small industrial Units	1000
Estimated Number of medium Industrial Units	200
Electricity (100% demand factor)	125 MW
Natural Gas	6200000 cubic m/day
Water	1000 Cusecs
Wastewater Production	800 Cusecs
Solid Waste Production	765 Tons/day

Environmental Impacts Due To Proposed Amendments at PA- LHR 03 (Chunia Industrial Estate)

- Considering population of area by 2035, the total municipal solid waste will be generated 1.2 tons/day. Municipal solid waste produced from area if not managed properly, will cause aesthetic problems and also produce odor along with the spread of many diseases. Similarly, medical waste produced from medical facilities etc. if not properly managed and disposed, it can result in injury by contaminated sharp material and infection with Hepatitis B, C, and HIV etc. From industries estimated solid waste production is 765 tons/day.
This can cause severe public as well as environmental health issues if not properly disposed.

- The operation of industry generates CO, NOx, Sox and PM which may deteriorate the ambient air quality of the area. The green house gasses estimated CO2 equivalent emissions from this industry area will be 70 million tones up till 2035. The Vehicular traffic from residential and industrial area will generate CO, NOx, PM and CO2 emissions which may have variety of health impacts to the commuters and persons living in residencies.

- Estimated production of waste water from residential units till 2035 will be 0.14 Cusecs and from industrial units are 800 Cusecs. The residential waste water have pollution load (COD-500, BOD-250 and TSS-300) which may deteriorate the surface water – River Ravi water quality. The industrial waste water have pollution load (COD-2500, BOD-1000 and TSS-900) which may deteriorate the surface water – River Ravi water quality.

- The growth rate of population, progressive migration of people from the nearby areas towards the area and the establishment of numerous industries has resulted in rapid increase in water demand (0.18 Cusecs for residential and 1000 Cusecs for industrial). The continuous extraction of ground water will have negative impact on ground water aquifer which is already depleting at 2.5-3.0 feet per year.

- Noise pollution will be generated from vehicles travelling and from industrial zones. The average noise level generated from industrial units is 70 to 80 dBA. Development of area leads towards rapid increase in vehicles on roads. Which if not properly managed will result in wastage of time as well as air and noise pollution. Noise pollution may results in hearing related diseases and may causes effects on local biodiversity.

- The LDA will require land acquisition for widening and improvement of the existing roads, development of bypass roads for various existing town/villages etc, development of inter town and villages roads, development of new main roads, connecting roads, accessibility roads, sewerage systems including pumping stations, disposal stations, treatment plants, development of
Chapter 6: SCREENING OF POTENTIAL ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

recreational areas, public utilities, buildings, administration buildings, toll stations and weighing stations.

- The main negative impact expected from the development in this area is the loss of 6500 acres of agricultural land. The other negative impacts are loss of biodiversity, habitat loss and fragmentation. The indirect impact include loss of livelihood to the peoples belongs to the agriculture activities.

- As the prime purpose of the amendments in master plan is to systemize the unplanned growth, so implementation of this plan at proposed sites will improve the socio-cultural environment. Planned development will ensure the cost effective provision of public utilities from government. It will improve the esthetic beauty of the area and make certain the sustainable development of area.

Conclusion:

The existing land use represents an unplanned haphazard residential and industrial growth without any legal cover or following any local approved plan.

If the proposed amendment area remains as such then the unplanned urban growth related with increase in population will result in miserable situation with high negative impact on environment and social settings of the area. However, few impacts will be generated due to development of the area which mainly includes land acquisition, loss of 6500 acres agriculture land, generation of 0.18 cusecs of wastewater and 1.43 tons/day of solid waste from residential area, generation of 800 cusecs of wastewater and 765 tons/day of solid waste from industrial area uptill 2035. The green house gasses estimated CO2 equivalent emissions from industrial area will be 70 million tones uptill 2035. After the Environmental Analysis of site, it can be concluded that the proposed site is feasible for future development. Further, the implementation of the environmental mitigation measures, proper monitoring and compliance of the environmental standards/legislations will make the Project environmentally more sustainable.
Chapter 6: SCREENING OF POTENTIAL ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

Proposed Land uses & Road Network of Lahore City (Site-LHR-4)

Proposed Population (2035) 181020

Total Area of Site 49694 Acres

Residential 2586 Acres

Industrial 12872 Acres

Proposed Agriculture 30881 Acres

Required Infrastructure/ Utilities (by 2035) Estimated Per Day

Residential

Estimated Number of Housing Units 25860

Electricity (based on 30% demand factor) 77 MW

Natural Gas (based on 219 cubic m/day) 39643380 cubic m/year
Environmental Impacts Due To Proposed Amendments at PA- LHR 04 (Multan Sui Asal and Manga Road):

- Estimated production of waste water from residential units till 2035 will be 20 Cusecs and from industrial units are 1080 Cusecs. The residential waste water have pollution load (COD-500, BOD-250 and TSS-300) which may deteriorate the surface water – River Ravi water quality. The industrial waste water have pollution load (COD-2500, BOD-1000 and TSS-900) which may deteriorate the surface water – River Ravi water quality.

- The operation of industry generates CO, NOx, Sox and PM which may deteriorate the ambient air quality of the area. The green house gasses estimated CO2 equivalent emissions from this industry area will be 77.8 million tones uptill 2035. The Vehicular traffic from residential and industrial area will generate CO, NOx, PM and CO2 emissions which may have variety of health impacts to the commuters and persons living in residencies.

- The growth rate of population, progressive migration of people from the nearby areas towards the area and the establishment of numerous industries has resulted in rapid increase in water demand (22 Cusecs for residential and 20 Cusecs for industrial units)
The continuous extraction of ground water will have negative impact on ground water aquifer which is already depleting at 2.5-3.0 feet per year.

- Considering population of area by 2035, the total municipal solid waste will be generated 153 tons/day. Municipal solid waste produced from area if not managed properly, will cause aesthetic problems and also produce odor along with the spread of many diseases. Similarly, medical waste produced from medical facilities etc. if not properly managed and disposed, it can result in injury by contaminated sharp material and infection with Hepatitis B, C, and HIV etc. From industries estimated solid waste production is 1000 tons/day. This can cause severe public as well as environmental health issues if not properly disposed.

- Noise pollution will be generated from vehicles travelling and from industrial zones. The average noise level generated from industrial units is 70 to 80 dBA. Development of area leads towards rapid increase in vehicles on roads. Which if not properly managed will result in wastage of time as well as air and noise pollution. Noise pollution may results in hearing related diseases and may causes effects on local biodiversity.

- The main negative impact expected from the development in this area is the loss of 15458 acres of agricultural land. The other negative impacts are loss of biodiversity, habitat loss and fragmentation. The indirect impact include loss of livelihood to the peoples belongs to the agriculture activities.

- As the prime purpose of the amendments in master plan is to systemize the unplanned growth, so implementation of this plan at proposed sites will improve the socio-cultural environment. Planned development will ensure the cost effective provision of public utilities from government. It will improve the esthetic beauty of the area and make certain the sustainable development of area.

Conclusion:
As already mentioned that the above the proposed site is being used for the industrial and residential purpose without any planning or following any development
plan as per the local government rules. Therefore, the existing industrial and residential areas lacks proper provision of the basic infrastructure and facilities. Most of the area lacks proper sewerage system and drains. Hence the area is exploiting the resources and creating pollution and unhygienic conditions for the residents as well as the workers working in the illegally setup industries.

If the proposed amendment area remains as such then the unplanned urban growth related with increase in population will result in miserable situation with high negative impact on environment and social settings of the area. However, few impacts will be generated due to development of the area which mainly includes land acquisition, loss of 15458 acres agriculture land, generation of 20 cusecs of wastewater and 153 tons/day of solid waste from residential area, generation of 1040 cusecs of wastewater and 1000 tons/day of solid waste from industrial area uptill 2035. The green house gasses estimated CO2 equivalent emissions from industrial area will be 77.8 million tones uptill 2035. After the Environmental Analysis of site, it can be concluded that the proposed site is feasible for future development. Further, the implementation of the environmental mitigation measures, proper monitoring and compliance of the environmental standards/legislations will make the Project environmentally more sustainable.
Chapter 6: SCREENING OF POTENTIAL ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

NSB-01 (Mandi Faizabad)

Existing Land Use Map

Notified Land Use Plan
Existing Landuse Characteristics
Existing Built Up Area
- Area: 400 Acres

Proposed Residential
- Area: 810 Acres

Total Project Area
- Area: 1516 Acres

Proposed Landuse Characteristics

<table>
<thead>
<tr>
<th>Landuse</th>
<th>Area (Acres)</th>
<th>%age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed Industrial Area</td>
<td>324</td>
<td></td>
</tr>
<tr>
<td>Proposed Residential Area</td>
<td>810</td>
<td></td>
</tr>
</tbody>
</table>

Estimated numbers of housing Units (2035)
- 5920

Estimated numbers of Small Industrial Units (2035)
- 32

Estimated numbers of Medium Industrial Units (2035)
- 7

Existing Population by 2015
- 67079

Population (Expected by 2035)
- 106763

Required Infrastructure/ Utilities (in 2035)

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Estimated Per Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td></td>
</tr>
<tr>
<td>Electricity (30% demand factor)</td>
<td>8.8 MW</td>
</tr>
<tr>
<td>Natural Gas (219 cubic meter/c/d)</td>
<td>60585 Cubic Meter/day</td>
</tr>
<tr>
<td>Water</td>
<td>12.37665 Cusecs</td>
</tr>
<tr>
<td>Wastewater Production</td>
<td>9.90132 Cusecs</td>
</tr>
<tr>
<td>Solid Waste Production (0.85kg/c/d)</td>
<td>85.82875 tons/day</td>
</tr>
<tr>
<td>Industrial</td>
<td></td>
</tr>
<tr>
<td>Electricity (100% demand factor)</td>
<td>4.300 MW</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>2643.83 Cubic Meter/day</td>
</tr>
<tr>
<td>Water</td>
<td>25.3 Cusecs</td>
</tr>
<tr>
<td>Wastewater Production</td>
<td>20 Cusecs</td>
</tr>
<tr>
<td>CO₂ Emissions</td>
<td>2330000 tons/year</td>
</tr>
<tr>
<td>Solid Waste Production (0.85kg*1000/c/d)</td>
<td>25.5</td>
</tr>
</tbody>
</table>
Environmental Impacts due to proposed amendment NSB-01 (Mandi Faizabad) Site:

1. Potential risk of flooding of this site due to river Ravi. The flood is the serious threat that can cause damage to property, livestock, infrastructure and more important life loss.

2. Industries and Vehicles generate CO, NOx, Sox and PM which may deteriorate the ambient air quality of the area and results in different health issues. The estimated carbon di oxide emissions from industry will be 2330000 tons/year up till 2035.

3. The growth rate of population, progressive migration of people from the nearby areas towards the area and the establishment of numerous industries has resulted in increase in water demand (12.3 cusecs for residential and 25 cusecs for industrial).

4. The continuous extraction of ground water will have impact on ground water aquifer which is already depleting at 2.5-3.0 feet per year.

5. Estimated production of waste water from residential units in 2035 will be 9.9 cusecs and from industrial units are 20 cusecs. The residential waste water has pollution load (COD-500, BOD-250 and TSS-300) which may deteriorate the surface water – river Ravi water quality. The industrial waste water has pollution load (COD-1500, BOD-800 and TSS-600) which may deteriorate the surface water – river Ravi water quality.

6. Considering population of area in 2035, the total municipal solid waste will be generated 85.8 tons/day.

7. Municipal solid waste produced from area if not managed properly, will cause aesthetic problems and also produce odor along with the spread of many diseases.

Similarly, medical waste produced from medical facilities etc. if not properly managed and disposed, it can result in injury by cutting sharp material and infection with Hepatitis B, C, and HIV etc.
8. Overlap of industries with residential area will have impact on people residing nearby area and will cause various health problems which include lung diseases, hear loss, diarrhea, intestinal problems etc.

9. Noise pollution will be generated from transportation and industrial zones. The average noise level generated from industrial units is 75 to 80 dBA. Noise pollution may results in hearing related diseases and may causes effects on local biodiversity.

10. Development of area leads towards increase in vehicles on roads. Which if not properly managed will result in wastage of time as well as air and noise pollution.

11. The LDA will require land acquisition for widening and improvement of the existing roads, development of bypass roads for various existing town/villages etc, development of inter town and villages roads, development of new main roads, connecting roads, accessibility roads, sewerage systems including pumping stations, disposal stations, treatment plants, development of recreational areas, public utilities, buildings, administration buildings, toll stations and weighing stations.

12. The main negative impact expected from the development in this area is the loss of 1134 acres of agricultural land. Indirect negative impacts are loss of biodiversity, habitat loss and fragmentation.

13. As the prime purpose of the amendments in master plan is not systemize the unplanned growth, so implementation of this plan at proposed sites will improve the socio-cultural environment. Planned development will ensure the cost effective provision of public utilities from government. It will improve the esthetic beauty of the area and make certain the sustainable development of area.

Conclusion:

As already mentioned that the above the proposed site is being used for the industrial and residential purpose without any planning or following any development plan as per the local government rules. Therefore, the existing industrial and
residential areas lacks proper provision of the basic infrastructure and facilities. Most of the area lacks proper sewerage system and drains. Hence the area is exploiting the resources and creating pollution and unhygienic conditions for the residents as well as the workers working in the illegally setup industries.

If the proposed amendment area remains as such then the unplanned urban growth related with increase in population will result in miserable situation with high negative impact on environment and social settings of the area. However, few impacts will be generated due to development of the area which mainly includes land acquisition, loss of 1134 acres agriculture land, generation of 9.90132 cusecs of wastewater and 85.82875 tons/day of solid waste from residential area, generation of 20 cusecs of wastewater and 25.5 tons/day of solid waste from industrial area up till 2035. The greenhouse gasses estimated CO2 equivalent emissions from industrial area will be 2330000 million tones up till 2035 for which the mitigation for these impacts have been proposed in the next section. The site is also prone to the flood hazard in accordance with hydrological study attached as Appendix- III. The mitigations for flood should have been followed in order to develop the site.

After the Environmental Analysis of site, it can be concluded that the proposed site is feasible for future development if only mitigations for flood hazard have been followed. Further, the implementation of the environmental mitigation measures, proper monitoring and compliance of the environmental standards/legislations will make the Project environmentally more sustainable.
Chapter 6: SCREENING OF POTENTIAL ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

PA-NSB-02 (Syed Wala)

Existing Land Use Map
Chapter 6: SCREENING OF POTENTIAL ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

Notified Land Use Plan

Existing Landuse Characteristics

<table>
<thead>
<tr>
<th>Landuse</th>
<th>Area (Acres)</th>
<th>%age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing Built Up Area</td>
<td>163.24</td>
<td></td>
</tr>
<tr>
<td>Proposed Residential Area</td>
<td>217</td>
<td></td>
</tr>
<tr>
<td>Total Project Area</td>
<td>380</td>
<td></td>
</tr>
</tbody>
</table>

Proposed Landuse Characteristics

<table>
<thead>
<tr>
<th>Landuse</th>
<th>Area (Acres)</th>
<th>%age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed Industrial Area</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Proposed Residential Area</td>
<td>380</td>
<td>70.11</td>
</tr>
<tr>
<td>Estimated numbers of housing Units (2035)</td>
<td>1365</td>
<td></td>
</tr>
</tbody>
</table>

Existing Population by 2015 15468
Population (Expected by 2035) 24615

Required Infrastructure/ Utilities (in 2035) Estimated Per Day

<table>
<thead>
<tr>
<th>Residential</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity (30% demand factor)</td>
<td>2.04 MW</td>
</tr>
<tr>
<td>Natural Gas (219 cubic meter/c/d)</td>
<td>13969 cubic m/day</td>
</tr>
<tr>
<td>Water (300LPCD)</td>
<td>2.853 cusecs</td>
</tr>
<tr>
<td>Wastewater Production</td>
<td>2.282 cusecs</td>
</tr>
<tr>
<td>Solid Waste Production (0.85kg/c/d)</td>
<td>19.7897 tons/day</td>
</tr>
</tbody>
</table>

Environmental Impacts due to proposed amendment NSB-02 (Syed Wala) Site:

1. Potential risk of flooding of this site due to river Ravi. The flood is the serious threat that can cause damage to property, livestock, infrastructure and more important life loss.

2. Movement of vehicles will generate CO, NOx, Sox and PM which may deteriorate the ambient air quality of the area.

3. The growth rate of population, progressive migration of people from the nearby areas towards the area and the establishment of numerous development infra-structure has resulted in increase in water demand (2.8 cusecs for residential). The continuous extraction of ground water will have
impact on ground water aquifer which is already depleting at 2.5-3.0 feet per year.

4. Overlap of industries with residential area will have impact on people residing nearby area and will cause various health problems which include lung diseases, hear loss, diarrhea, intestinal problems etc.

5. Considering population of area in 2035, the total municipal solid waste will be generated 19 tons/day.

6. Municipal solid waste produced from area if not managed properly, will cause aesthetic problems and also produce odor along with the spread of many diseases. Similarly, medical waste produced from medical facilities etc. if not properly managed and disposed, it can result in injury by cutting sharp material and infection with Hepatitis B, C, and HIV etc.

7. Estimated production of waste water from residential units in 2035 will be 2.2 cusecs. The residential waste water has pollution load (COD-500, BOD-250 and TSS-300) which may deteriorate the surface water – river Ravi water quality.

8. The LDA will require land acquisition for widening and improvement of the existing roads, development of bypass roads for various existing town/villages etc, development of inter town and villages roads, development of new main roads, connecting roads, accessibility roads, sewerage systems including pumping stations, disposal stations, treatment plants, development of recreational areas, public utilities, buildings, administration buildings, toll stations and weighing stations.

9. As the prime purpose of the amendments in master plan is not systemize the unplanned growth, so implementation of this plan at proposed sites will improve the socio-cultural environment. Planned development will ensure the cost effective provision of public utilities from government. It will improve the esthetic beauty of the area and make certain the sustainable development of area.
10. Noise pollution will be generated from transportation. The average noise level generated from transportation is 70 to 75 dBA. Noise pollution may result in hearing-related diseases and may cause effects on local biodiversity.

11. Development of area leads towards an increase in vehicles on roads. Which if not properly managed will result in wastage of time as well as air and noise pollution.

12. The main negative impact expected from the development in this area is the loss of 380 acres of agricultural land. Indirect negative impacts are loss of biodiversity, habitat loss, and fragmentation.

Conclusion:

Based on the existing conditions, the locals are living in the unplanned areas without proper provision of basic amenities such as clear water, proper sewerage system, road or streets, low voltage, etc.

If the proposed amendment area remains as such, the unplanned urban growth related with an increase in population will result in a miserable situation with high negative impact on the environment and social settings of the area. However, few impacts will be generated due to the development of the area which mainly includes land acquisition, loss of 380 acres of agricultural land, generation of 2.282 cusecs of wastewater from residential area and 19.7897 tons/day of solid waste up till 2035 for which the mitigation for these impacts have been proposed in the next section. The site is also prone to flood hazard in accordance with the hydrological study attached as Appendix-III. The mitigations for flood should have been followed in order to develop the site.

After the Environmental Analysis of the site, it can be concluded that the proposed site is feasible for future development if only mitigations for flood hazard have been followed. Further, the implementation of the environmental mitigation measures, proper monitoring and compliance of the environmental standards/legislations will make the Project environmentally more sustainable.
Chapter 6: SCREENING OF POTENTIAL ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

PA-NSB-03 (Bucheki)

Existing Land Use Map
Notified Land Use Plan

Existing Land Use Characteristics

<table>
<thead>
<tr>
<th>Landuse</th>
<th>Area (Acres)</th>
<th>%age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing Built Up Area</td>
<td>504</td>
<td></td>
</tr>
<tr>
<td>Residential Proposed</td>
<td>431</td>
<td></td>
</tr>
<tr>
<td>Total Project Area</td>
<td>1372</td>
<td></td>
</tr>
</tbody>
</table>

Proposed Land Use Characteristics

<table>
<thead>
<tr>
<th>Landuse</th>
<th>Area (Acres)</th>
<th>%age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed Industrial Area</td>
<td>437</td>
<td></td>
</tr>
<tr>
<td>(On existing agricultural area)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proposed Residential Area</td>
<td>431</td>
<td></td>
</tr>
<tr>
<td>(on existing agricultural area)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estimated Housing Units (in 2035)</td>
<td>1714</td>
<td></td>
</tr>
<tr>
<td>Estimated Medium Scale Industries (in 2035)</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Estimated Small Scale Industries (in 2035)</td>
<td>41</td>
<td></td>
</tr>
</tbody>
</table>

Required Infrastructure/ Utilities (in 2035)

Estimated Per Day

<table>
<thead>
<tr>
<th>Residential</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity (30% demand factor)</td>
<td>2.9 MW</td>
</tr>
<tr>
<td>Natural Gas (219 cubic meter/c/d)</td>
<td>17543.2 Cubic m/day</td>
</tr>
<tr>
<td>Water (300LPCD)</td>
<td>3.583 Cusecs</td>
</tr>
<tr>
<td>Wastewater Production</td>
<td>2.867 Cusecs</td>
</tr>
<tr>
<td>Solid Waste Production (0.85kg/c/d)</td>
<td>24.853 tons/day</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Industrial</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity (100% demand factor)</td>
<td>5.025 MW</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>1000 cubic m/day</td>
</tr>
<tr>
<td>Water</td>
<td>31.6 Cusecs</td>
</tr>
<tr>
<td>Wastewater Production</td>
<td>25.2 Cusecs</td>
</tr>
<tr>
<td>Carbon di Oxide Production</td>
<td>2840000 tons/year</td>
</tr>
<tr>
<td>Solid Waste Production</td>
<td>31.02</td>
</tr>
</tbody>
</table>
Environmental Impacts due to proposed amendment NSB-03 (Bucheki) Site:

1. Potential risk of flooding of this site due to river Ravi. The flood is the serious threat that can cause damage to property, livestock, infrastructure and more important life loss.

2. The operation of industries will generate CO, NOx, Sox and PM which may deteriorate the ambient air quality of the area. The estimated carbon di oxide emissions from industry will be 284 million tones up till 2035.

3. Overlap of industries with residential area will have impact on people residing nearby area and will cause various health problems which include lung diseases, hear loss, diarrhea, intestinal problems etc.

4. The growth rate of population, progressive migration of people from the nearby areas towards the area and the establishment of numerous industries has resulted in increase in water demand (3.5 cusecs for residential and 31 cusecs for industrial). The continuous extraction of ground water will have impact on ground water aquifer which is already depleting at 2.5-3.0 feet per year.

5. Considering population of area in 2035, the total municipal solid waste will be generated 24.8 tons/day.

6. Municipal solid waste produced from area if not managed properly, will cause aesthetic problems and also produce odor along with the spread of many diseases. Similarly, medical waste produced from medical facilities etc. if not properly managed and disposed, it can result in injury by cutting sharp material and infection with Hepatitis B, C, and HIV etc.

7. Estimated production of waste water from residential units in 2035 will be 2.8 cusecs and from industrial units are 25 cusecs. The residential waste water has pollution load (COD-500, BOD-250 and TSS-300) which may deteriorate the surface water – river Ravi water quality. The industrial waste water has pollution load (COD-1500, BOD-800 and TSS-600) which may deteriorate the surface water – river Ravi water quality.
8. Noise pollution will be generated from transportation and industrial zones. The average noise level generated from industrial units is 75 to 80 dBA. Noise pollution may result in hearing related diseases and may cause effects on local biodiversity.

9. Development of area leads towards increase in vehicles on roads. Which if not properly managed will result in wastage of time as well as air and noise pollution.

10. The main negative impact expected from the development in this area is the loss of 868 acres of agricultural land. Indirect negative impacts are loss of biodiversity, habitat loss and fragmentation.

11. As the prime purpose of the amendments in master plan is not systemize the unplanned growth, so implementation of this plan at proposed sites will improve the socio-cultural environment. Planned development will ensure the cost effective provision of public utilities from government. It will improve the aesthetic beauty of the area and make certain the sustainable development of area.

12. The LDA will require land acquisition for widening and improvement of the existing roads, development of bypass roads for various existing town/villages etc, development of inter town and villages roads, development of new main roads, connecting roads, accessibility roads, sewerage systems including pumping stations, disposal stations, treatment plants, development of recreational areas, public utilities, buildings, administration buildings, toll stations and weighing stations.

Conclusion:

The existing land use represent an unplanned haphazard residential and industrial growth which lacks provision of basic infrastructure and amenities without any legal cover or following any local approved plan.

If the proposed amendment area remains as such then the unplanned urban growth related with increase in population will result in miserable situation with high negative impact on environment and social settings of the area. However, few impacts will be
generated due to development of the area which mainly includes land acquisition, loss of 868 acres agriculture land, generation of 2.867 cusecs of wastewater and 24.853 tons/day of solid waste from residential area, generation of 25.2 cusecs of wastewater and 31.02 tons/day of solid waste from industrial area up till 2035. The greenhouse gasses estimated CO2 equivalent emissions from industrial area will be 284 million tones up till 2035 for which the mitigation for these impacts have been proposed in the next section. The site is also prone to the flood hazard in accordance with hydrological study attached as Appendix- III. The mitigations for flood should have been followed in order to develop the site.

After the Environmental Analysis of site, it can be concluded that the proposed site is feasible for future development if only mitigations for flood hazard have been followed. Further, the implementation of the environmental mitigation measures, proper monitoring and compliance of the environmental standards/legislations will make the Project environmentally more sustainable.

6.5.2 District Nankana Sahib

PA-NSB-04 (Nankana Sahib)

NSB-04 (Nankana Sahib)

Note: All the uses of ODP are retained as such.
Amendment in Master Plan for Lahore Division (The Project)
Environmental Impact Assessment (EIA) Report
Chapter 6: SCREENING OF POTENTIAL ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

PA-NSB-05 (Shahkot-I)

NSB-05 (Shahkot-I)

Existing Land Use Map
Notified Land Use Plan

Existing Landuse Characteristics

<table>
<thead>
<tr>
<th>Landuse</th>
<th>Area (Acres)</th>
<th>%age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing Built Up Area</td>
<td>1678</td>
<td></td>
</tr>
<tr>
<td>Purposed Residential</td>
<td>1636</td>
<td></td>
</tr>
<tr>
<td>Total Project Area</td>
<td>3314</td>
<td></td>
</tr>
</tbody>
</table>

Proposed Landuse Characteristics

<table>
<thead>
<tr>
<th>Landuse</th>
<th>Area (Acres)</th>
<th>%age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed Industrial Area</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Proposed Residential Area</td>
<td>1636</td>
<td></td>
</tr>
<tr>
<td>Estimated Numbers of Housing Units (2035)</td>
<td>7485</td>
<td></td>
</tr>
</tbody>
</table>

Existing Population by 2015

61450

Population (Expected by 2035)

114297

Required Infrastructure/ Utilities (in 2035)

<table>
<thead>
<tr>
<th></th>
<th>Estimated Per Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td></td>
</tr>
<tr>
<td>Electricity (30% demand factor)</td>
<td>11 MW</td>
</tr>
<tr>
<td>Natural Gas (219 cubic meter/c/d)</td>
<td>65549 cubic m/day</td>
</tr>
<tr>
<td>Water (300LPCD)</td>
<td>13.3 Cusecs</td>
</tr>
<tr>
<td>Wastewater Production</td>
<td>10.712 Cusecs</td>
</tr>
<tr>
<td>Solid Waste Production (0.85kg/c/d)</td>
<td>92.861 tons/day</td>
</tr>
</tbody>
</table>
Environmental Impacts due to proposed amendment NSB-05 (Shahkot-I) Site:

1. The movement of vehicles will generate CO, NOx, Sox and PM which may deteriorate the ambient air quality of the area. The estimated carbon di oxide emissions from industry will be 330 million tones up till 2035.

2. The growth rate of population, progressive migration of people from the nearby areas towards the area and the establishment of numerous industries has resulted in increase in water demand (13.3 cusecs for residential).

3. The continuous extraction of ground water will have impact on ground water aquifer which is already depleting at 2.5-3.0 feet per year.

4. The LDA will require land acquisition for widening and improvement of the existing roads, development of bypass roads for various existing town/villages etc, development of inter town and villages roads, development of new main roads, connecting roads, accessibility roads, sewerage systems including pumping stations, disposal stations, treatment plants, development of recreational areas, public utilities, buildings, administration buildings, toll stations and weighing stations.

5. Estimated production of waste water from residential units in 2035 will be 10.7 cusecs. The residential waste water has pollution load (COD-500, BOD-250 and TSS-300) which may deteriorate the surface water – river Ravi water quality.

6. Considering population of area in 2035, the total municipal solid waste will be generated 92 tons/day.

7. Municipal solid waste produced from area if not managed properly, will cause aesthetic problems and also produce odor along with the spread of many diseases. Similarly, medical waste produced from medical facilities etc. if not properly managed and disposed, it can result in injury by cutting sharp material and infection with Hepatitis B, C, and HIV etc.

8. Noise pollution will be generated from transportation. The average noise level generated from industrial units is 70 to 75 dBA. Noise pollution may results in hearing related diseases and may causes effects on local biodiversity.
Development of area leads towards increase in vehicles on roads. Which if not properly managed will result in wastage of time as well as air and noise pollution.

9. As the prime purpose of the amendments in master plan is not systemize the unplanned growth, so implementation of this plan at proposed sites will improve the socio-cultural environment. Planned development will ensure the cost effective provision of public utilities from government. It will improve the esthetic beauty of the area and make certain the sustainable development of area.

10. The main negative impact expected from the development in this area is the loss of 1636 acres of agricultural land. Indirect negative impacts are loss of biodiversity, habitat loss and fragmentation.

Conclusion:

Again this area is being developed without any proper planning therefore, no infrastructure, standard, basic amenities etc. are available.

If the proposed amendment area remains as such then the unplanned urban growth related with increase in population will result in miserable situation with high negative impact on environment and social settings of the area. However, few impacts will be generated due to development of the area which mainly includes land acquisition, loss of 1636 acres agriculture land, generation of 10.712 cusecs of wastewater from residential area and 92.861 tons/day of solid waste up till 2035 for which the mitigation for these impacts have been proposed in the next section. After the Environmental Analysis of site, it can be concluded that the proposed site is feasible for future development. Further, the implementation of the environmental mitigation measures, proper monitoring and compliance of the environmental standards/legislations will make the Project environmentally more sustainable.
Amendment in Master Plan for Lahore Division (The Project)
Environmental Impact Assessment (EIA) Report
Chapter 6: SCREENING OF POTENTIAL ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

PA-NSB-06 (Sangla Hill)

NSB-06 (Sangla Hill)

Existing Land Use Map

Notified Land Use Plan
Existing Landuse Characteristics
Chapter 6: SCREENING OF POTENTIAL ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

<table>
<thead>
<tr>
<th>Landuse</th>
<th>Area (Acres)</th>
<th>%age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing Built Up Area</td>
<td>1694</td>
<td></td>
</tr>
<tr>
<td>Proposed Residential</td>
<td>1532</td>
<td></td>
</tr>
<tr>
<td>Total project area</td>
<td>3266</td>
<td></td>
</tr>
</tbody>
</table>

Proposed Landuse Characteristics

<table>
<thead>
<tr>
<th>Landuse</th>
<th>Area (Acres)</th>
<th>%age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed Industrial Area</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Proposed Residential Area</td>
<td>1532</td>
<td></td>
</tr>
<tr>
<td>Estimated Numbers of housing units (2035)</td>
<td>6736</td>
<td></td>
</tr>
</tbody>
</table>

- **Existing Population by 2015**: 75130
- **Population (Expected by 2035)**: 120258

Required Infrastructure/ Utilities (in 2035)

- **Residential**
 - **Electricity (30% demand factor)**: 10 MW
 - **Natural Gas (219 cubic meter/c/d)**: 67342.8 cubic m/day
 - **Water (300LPCD)**: 13.75 Cusecs
 - **Wastewater Production**: 11.0 Cusecs
 - **Solid Waste Production (0.85kg/c/d)**: 95.402 tons/day

Environmental Impacts due to proposed amendment NSB-06 (Sangla Hill) Site:

1. Movement of vehicles will generate CO, NOx, Sox and PM which may deteriorate the ambient air quality of the area.

2. The continuous extraction of ground water will have impact on ground water aquifer which is already depleting at 2.5-3.0 feet per year.

3. The main negative impact expected from the development in this area is the loss of 1532 acres of agricultural land. Indirect negative impacts are loss of biodiversity, habitat loss and fragmentation.

4. The growth rate of population, progressive migration of people from the nearby areas towards the area and the establishment of numerous industries has resulted in increase in water demand (13.7 cusecs for residential).
5. Estimated production of waste water from residential units in 2035 will be 11.0 cusecs. The residential waste water has pollution load (COD-500, BOD-250 and TSS-300) which may deteriorate the surface water – river Ravi water quality.

6. Considering population of area in 2035, the total municipal solid waste will be generated 95 tons/day. Municipal solid waste produced from area if not managed properly, will cause aesthetic problems and also produce odor along with the spread of many diseases. Similarly, medical waste produced from medical facilities etc. if not properly managed and disposed, it can result in injury by cutting sharp material and infection with Hepatitis B, C, and HIV etc.

7. From industries estimated solid waste production is 1870 tons/day. This can cause severe public as well as environmental health issues if not properly disposed.

8. Noise pollution will be generated from transportation. The average noise level generated from industrial units is 70 to 75 dBA. Noise pollution may results in hearing related diseases and may causes effects on local biodiversity. Development of area leads towards increase in vehicles on roads. Which if not properly managed will result in wastage of time as well as air and noise pollution.

9. The LDA will require land acquisition for widening and improvement of the existing roads, development of bypass roads for various existing town/villages etc, development of inter town and villages roads, development of new main roads, connecting roads, accessibility roads, sewerage systems including pumping stations, disposal stations, treatment plants, development of recreational areas, public utilities, buildings, administration buildings, toll stations and weighing stations.

10. As the prime purpose of the amendments in master plan is not systemize the unplanned growth, so implementation of this plan at proposed sites will improve the socio-cultural environment. Planned development will ensure the cost effective provision of public utilities from government. It will improve the
Conclusion:

Based on the existing conditions the locals are living in the unplanned areas without proper provision of basic amenities such as clear water, proper sewerage system, road or streets, low voltage etc.

If the proposed amendment area remains as such then the unplanned urban growth related with increase in population will result in miserable situation with high negative impact on environment and social settings of the area. However, few impacts will be generated due to development of the area which mainly includes land acquisition, loss of 1532 acres agriculture land, generation of 11.0 cusecs of wastewater from residential area and 95.402 tons/day of solid waste uptill 2035 for which the mitigation for these impacts have been proposed in the next section. After the Environmental Analysis of site, it can be concluded that the proposed site is feasible for future development. Further, the implementation of the environmental mitigation measures, proper monitoring and compliance of the environmental standards/legislations will make the Project environmentally more sustainable.
Chapter 6: SCREENING OF POTENTIAL ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

PA-NSB-07 (More Khunda)

NSB-07 (More Khunda)

Existing Land Use Map

Notified Land Use Plan

Existing Landuse Characteristics
Amendment in Master Plan for Lahore Division (The Project)
Environmental Impact Assessment (EIA) Report

Chapter 6: SCREENING OF POTENTIAL ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

<table>
<thead>
<tr>
<th>Landuse</th>
<th>Area (Acres)</th>
<th>%age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing Built Up Area</td>
<td>438</td>
<td></td>
</tr>
<tr>
<td>Proposed Residential Area</td>
<td>460</td>
<td></td>
</tr>
<tr>
<td>Total Project Area</td>
<td>1136</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proposed Landuse Characteristics</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Landuse</th>
<th>Area (Acres)</th>
<th>%age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed Agriculture Area</td>
<td>360</td>
<td>--</td>
</tr>
<tr>
<td>Proposed Residential Area</td>
<td>460</td>
<td></td>
</tr>
<tr>
<td>Estimated Number of housings units (in 2035)</td>
<td>1498</td>
<td></td>
</tr>
</tbody>
</table>

Existing Population by 2015 16978
Population (Expected by 2035) 27017

<table>
<thead>
<tr>
<th>Required Infrastructure/ Utilities (in 2035)</th>
<th>Estimated Per Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td></td>
</tr>
<tr>
<td>Electricity (30% demand factor)</td>
<td>2.2 MW</td>
</tr>
<tr>
<td>Natural Gas (219 cubic meter/c/d)</td>
<td>15334.2 cubic meter/day</td>
</tr>
<tr>
<td>Water (300LPCD)</td>
<td>3.1 cusecs</td>
</tr>
<tr>
<td>Wastewater Production</td>
<td>2.5 cusecs</td>
</tr>
<tr>
<td>Solid Waste Production (0.85kg/c/d)</td>
<td>21.7234 tons/day</td>
</tr>
</tbody>
</table>

Environmental Impacts due to proposed amendment NSB-07 (More Khunda) Site:

1. Potential risk of flooding of this site due to river Ravi. The flood is the serious threat that can cause damage to property, livestock, infrastructure and more important life loss.
2. Movement of vehicles will generate CO, NOx, Sox and PM which may deteriorate the ambient air quality of the area and result in different health related issues.

3. The growth rate of population, progressive migration of people from the nearby areas towards the area and the establishment of numerous industries has resulted in increase in water demand (3.1 cusecs for residential). The continuous extraction of ground water will have impact on ground water aquifer which is already depleting at 2.5-3.0 feet per year.

4. Considering population of area in 2035, the total municipal solid waste will be generated 21 tons/day. Municipal solid waste produced from area if not managed properly, will cause aesthetic problems and also produce odor along with the spread of many diseases. Similarly, medical waste produced from medical facilities etc. if not properly managed and disposed, it can result in injury by cutting sharp material and infection with Hepatitis B, C, and HIV etc.

5. From industries estimated solid waste production is 1870 tons/day. This can cause severe public as well as environmental health issues if not properly disposed.

6. Estimated production of waste water from residential units in 2035 will be 2.5 cusecs. The residential waste water has pollution load (COD-500, BOD-250 and TSS-300) which may deteriorate the surface water – river Ravi water quality.

7. Noise pollution will be generated from transportation. The average noise level generated from industrial units is 70 to 75 dBA. Noise pollution may results in hearing related diseases and may causes effects on local biodiversity. Development of area leads towards increase in vehicles on roads. Which if not properly managed will result in wastage of time as well as air and noise pollution.

8. The LDA will require land acquisition for widening and improvement of the existing roads, development of bypass roads for various existing town/villages etc, development of inter town and villages roads, development of new main roads, connecting roads, accessibility roads, sewerage systems including
pumping stations, disposal stations, treatment plants, development of recreational areas, public utilities, buildings, administration buildings, toll stations and weighing stations.

9. The main negative impact expected from the development in this area is the loss of 460 acres of agricultural land. Indirect negative impacts are loss of biodiversity, habitat loss and fragmentation.

10. As the prime purpose of the amendments in master plan is not systemize the unplanned growth, so implementation of this plan at proposed sites will improve the socio-cultural environment. Planned development will ensure the cost effective provision of public utilities from government. It will improve the esthetic beauty of the area and make certain the sustainable development of area.

Conclusion:

The existing land use represent an unplanned haphazard residential growth which lacks provision of basic infrastructure and amenities without any legal cover or following any local approved plan.

If the proposed amendment area remains as such then the unplanned urban growth related with increase in population will result in miserable situation with high negative impact on environment and social settings of the area. However, few impacts will be generated due to development of the area which mainly includes land acquisition, loss of 460 acres agriculture land, generation of 2.5 cusecs of wastewater from residential area and 21.7234 tons/day of solid waste uptill 2035 for which the mitigation for these impacts have been proposed in the next section.

The site is also prone to the flood hazard in accordance with hydrological study attached as Appendix- III. The mitigations for flood should have been followed in order to develop the site.

After the Environmental Analysis of site, it can be concluded that the proposed site is feasible for future development if only mitigations for flood hazard have been followed. Further, the implementation of the environmental mitigation measures,
proper monitoring and compliance of the environmental standards/legislations will make the Project environmentally more sustainable.

PA-NSB-08 (Shahkot-II)

Existing Land Use Map
Chapter 6: SCREENING OF POTENTIAL ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

Notified Land Use Plan

Proposed Land Use Characteristics

<table>
<thead>
<tr>
<th>Landuse</th>
<th>Area (Acres)</th>
<th>%age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed Industrial Area</td>
<td>759</td>
<td></td>
</tr>
<tr>
<td>Total project area</td>
<td>1029</td>
<td></td>
</tr>
<tr>
<td>Proposed Agriculture</td>
<td>270</td>
<td></td>
</tr>
<tr>
<td>Estimated Numbers of heavy Industrial Units (in 2035)</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Estimated Numbers of Medium Industrial Units (in 2035)</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Required Infrastructure/ Utilities (in 2035)

<table>
<thead>
<tr>
<th>(in 2035)</th>
<th>Estimated Per Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrial</td>
<td></td>
</tr>
<tr>
<td>Electricity (100% demand factor)</td>
<td>33 MW</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>620000 cubic meter/day</td>
</tr>
<tr>
<td>Water</td>
<td>59.6 cusecs</td>
</tr>
<tr>
<td>Wastewater Production</td>
<td>47.6 cusecs</td>
</tr>
<tr>
<td>CO₂ Production</td>
<td>5150000</td>
</tr>
<tr>
<td>Solid Waste Production</td>
<td>46.3 tons/day</td>
</tr>
<tr>
<td>(0.85kg*1000/i/d)</td>
<td></td>
</tr>
</tbody>
</table>

Environmental Impacts due to proposed amendment NSB-08 (Shahkot-II) Site:

1. The operation of industries will generate CO, NOx, Sox and PM which may deteriorate the ambient air quality of the area.

2. The estimated carbon dioxide emissions from industry will be 515 million tones up till 2035.

3. The growth rate of population, progressive migration of people from the nearby areas towards the area and the establishment of numerous industries has resulted in increase in water demand (59.6 cusecs for industrial). The continuous extraction of ground water will have impact on ground water aquifer which is already depleting at 2.5-3.0 feet per year.
4. Estimated production of waste water from industrial units is 47.6 cusecs. The industrial waste water have pollution load (COD-1500, BOD-800 and TSS-600) which may deteriorate the surface water – river Ravi water quality.

5. Considering population of area in 2035, the total industrial solid waste will be generated 46.3 tons/day.

6. Solid waste produced from area if not managed properly, will cause aesthetic problems and also produce odor along with the spread of many diseases. Similarly, medical waste produced from medical facilities etc. if not properly managed and disposed, it can result in injury by cutting sharp material and infection with Hepatitis B, C, and HIV etc.

7. From industries estimated solid waste production is 1870 tons/day. This can cause severe public as well as environmental health issues if not properly disposed.

8. Noise pollution will be generated from transportation and industrial zones. The average noise level generated from industrial units is 75 to 80 dBA. Noise pollution may results in hearing related diseases and may causes effects on local biodiversity. Development of area leads towards increase in vehicles on roads. Which if not properly managed will result in wastage of time as well as air and noise pollution.

9. The LDA will require land acquisition for widening and improvement of the existing roads, development of bypass roads for various existing town/villages etc, development of inter town and villages roads, development of new main roads, connecting roads, accessibility roads, sewerage systems including pumping stations, disposal stations, treatment plants, development of recreational areas, public utilities, buildings, administration buildings, toll stations and weighing stations.

10. The main negative impact expected from the development in this area is the loss of 759 acres of agricultural land. Indirect negative impacts are loss of biodiversity, habitat loss and fragmentation.
11. Overlap of industries with residential area will have impact on people residing nearby area and will cause various health problems which include lung diseases, hear loss, diarrhea, intestinal problems etc.

12. As the prime purpose of the amendments in master plan is not systemize the unplanned growth, so implementation of this plan at Proposed sites will improve the socio-cultural environment. Planned development will ensure the cost effective provision of public utilities from government. It will improve the esthetic beauty of the area and make certain the sustainable development of area.

Conclusion:

The existing land use represent an unplanned haphazard residential and industrial growth which lacks provision of basic infrastructure and amenities without any legal cover or following any local approved plan.

If the proposed amendment area remains as such then the unplanned urban growth related with increase in population will result in miserable situation with high negative impact on environment and social settings of the area. However, few impacts will be generated due to development of the area which mainly includes land acquisition, loss of 759 acres agriculture land, generation of 47.6 cusecs of wastewater and 46.3 tons/day of solid waste from industrial area up till 2035. The greenhouse gasses estimated CO2 equivalent emissions from industrial area will be 5150000 million tones up till 2035 for which the mitigation for these impacts have been proposed in the next section. After the Environmental Analysis of site, it can be concluded that the proposed site is feasible for future development. Further, the implementation of the environmental mitigation measures, proper monitoring and compliance of the environmental standards/legislations will make the Project environmentally more sustainable.
Chapter 6: SCREENING OF POTENTIAL ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

PA-NSB-09-(Warburton)

NSB-09-(Warburton)

Existing Land Use Map

Notified Land Use Plan

Existing Landuse Characteristics
Chapter 6: SCREENING OF POTENTIAL ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

<table>
<thead>
<tr>
<th>Landuse</th>
<th>Area (Acres)</th>
<th>%age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing Built Up Area</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Proposed Agricultural Area</td>
<td>360</td>
<td></td>
</tr>
<tr>
<td>Total project Area</td>
<td>885</td>
<td></td>
</tr>
</tbody>
</table>

Proposed Landuse Characteristics

<table>
<thead>
<tr>
<th>Landuse</th>
<th>Area (Acres)</th>
<th>%age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed Industrial Area</td>
<td>283</td>
<td></td>
</tr>
<tr>
<td>Proposed Residential Area</td>
<td>242</td>
<td></td>
</tr>
<tr>
<td>Estimated Number of Housing Units (in 2035)</td>
<td>1631</td>
<td></td>
</tr>
<tr>
<td>Estimated Number of Medium Industrial Units (in 2035)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Estimated Number of Small Industrial Units (in 2035)</td>
<td>19</td>
<td></td>
</tr>
</tbody>
</table>

| Existing Population by 2015 | 26352 |
| Population (Expected by 2035) | 37282 |

Required Infrastructure/ Utilities (in 2035)

- **Residential**
 - Electricity (30% demand factor) 2.4 MW
 - Natural Gas (219 cubic meter/c/d) 21159.6 cubic m/day
 - Water (300LPCD) 4.322 cusecs
 - Wastewater Production 3.458 cusecs
 - Solid Waste Production (0.85kg/c/d) 29.9761 tons/day

- **Industrial**
 - Electricity (100% demand factor) 2.475 MW
 - Natural Gas (150 cubic meter/i/d) 479.45 cubic m/day
 - Water (10 cubic m/i/d) 13.2cusecs
 - Wastewater Production 10.5cusecs
 - CO₂ Emissions 1360000 tons/year
 - Solid Waste Production (0.85kg*1000/c/d) 14.8
Environmental Impacts due to proposed amendment NSB-09-(Warburton) Site:

1. The operation of industry generates CO, NOx, Sox and PM which may deteriorate the ambient air quality of the area. The estimated carbon di oxide emissions from industry will be 1360 million tones up till 2035.

2. The growth rate of population, progressive migration of people from the nearby areas towards the area and the establishment of numerous industries has resulted in increase in water demand (4.3 cusecs for residential and 13.2 cusecs for industrial). The continuous extraction of ground water will have impact on ground water aquifer which is already depleting at 2.5-3.0 feet per year.

3. Overlap of industries with residential area will have impact on people residing nearby area and will cause various health problems which include lung diseases, hear loss, diarrhea, intestinal problems etc.

4. The main negative impact expected from the development in this area is the loss of 510 acres of agricultural land. Indirect negative impacts are loss of biodiversity, habitat loss and fragmentation.

5. Estimated production of waste water from residential units in 2035 will be 3.4 cusecs and from industrial units are 10.5 cusecs. The residential waste water has pollution load (COD-500, BOD-250 and TSS-300) which may deteriorate the surface water – river Ravi water quality. The industrial waste water has pollution load (COD-1500, BOD-800 and TSS-600) which may deteriorate the surface water – river Ravi water quality.

6. Noise pollution will be generated from transportation and industrial zones. The average noise level generated from industrial units is 75 to 80 dBA. Noise pollution may results in hearing related diseases and may causes effects on local biodiversity. Development of area leads towards increase in vehicles on roads. Which if not properly managed will result in wastage of time as well as air and noise pollution

7. Considering population of area in 2035, the total municipal solid waste will be generated 29 tons/day. Municipal solid waste produced from area if not
managed properly, will cause aesthetic problems and also produce odor along with the spread of many diseases. Similarly, medical waste produced from medical facilities etc. if not properly managed and disposed, it can result in injury by cutting sharp material and infection with Hepatitis B, C, and HIV etc.

8. The LDA will require land acquisition for widening and improvement of the existing roads, development of bypass roads for various existing town/villages etc, development of inter town and villages roads, development of new main roads, connecting roads, accessibility roads, sewerage systems including pumping stations, disposal stations, treatment plants, development of recreational areas, public utilities, buildings, administration buildings, toll stations and weighing stations.

9. As the prime purpose of the amendments in master plan is not systemize the unplanned growth, so implementation of this plan at proposed sites will improve the socio-cultural environment. Planned development will ensure the cost effective provision of public utilities from government. It will improve the esthetic beauty of the area and make certain the sustainable development of area.

Conclusion:

As already mentioned that the above the proposed site is being used for the industrial and residential purpose without any planning or following any development plan as per the local government rules. Therefore, the existing industrial and residential areas lacks proper provision of the basic infrastructure and facilities. Most of the area lacks proper sewerage system and drains. Hence the area is exploiting the resources and creating pollution and unhygienic conditions for the residents as well as the workers working in the illegally setup industries.

If the proposed amendment area remains as such then the unplanned urban growth related with increase in population will result in miserable situation with high negative impact on environment and social settings of the area. However, few impacts will be generated due to development of the area which mainly includes land acquisition, loss of 510 acres agriculture land, generation of 3.458 cusecs of wastewater and 29.9761 tons/day of solid waste from residential area, generation of 10.5 cusecs of
wastewater and 14.8 tons/day of solid waste from industrial area up till 2035. The greenhouse gases estimated CO2 equivalent emissions from industrial area will be 1360000 million tones up till 2035 for which the mitigation for these impacts have been proposed in the next section. After the Environmental Analysis of site, it can be concluded that the proposed site is feasible for future development. Further, the implementation of the environmental mitigation measures, proper monitoring and compliance of the environmental standards/legislations will make the Project environmentally more sustainable.

PA-NSB-10(Shahkot-III)

![Existing Land Use Map](image)
Chapter 6: SCREENING OF POTENTIAL ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

Notified Land Use Plan

Proposed Land use Characteristics

<table>
<thead>
<tr>
<th>Landuse</th>
<th>Area (Acres)</th>
<th>%age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed Residential Area</td>
<td>294</td>
<td></td>
</tr>
<tr>
<td>Builtup</td>
<td>175</td>
<td></td>
</tr>
</tbody>
</table>

Estimated Numbers of Housing Units: 2100

Existing Population by 2015: -

Population (Expected by 2035): 14700

Required Infrastructure/ Utilities (in 2035)

- Estimated Per Day
 - Residential
 - Electricity (30% demand factor): 3 MW
 - Natural Gas (219 cubic meter/c/d): 3219300 cubic meter/day
 - Water (300LPCD): 1.8 Cusecs
 - Wastewater Production: 1.4 Cusecs
 - Solid Waste Production (0.85kg/c/d): 12 tons/day

Environmental Impacts due to proposed amendment NSB-10 (Shahkot-III) Site:
Chapter 6: SCREENING OF POTENTIAL ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

1. Movement of vehicles will generate CO, NOx, Sox and PM which may deteriorate the ambient air quality of the area.

2. The growth rate of population, progressive migration of people from the nearby areas towards the area and the establishment of numerous industries has resulted in increase in water demand (1.8 cusecs for residential). The continuous extraction of ground water will have impact on ground water aquifer which is already depleting at 2.5-3.0 feet per year.

3. Estimated production of waste water from residential units in 2035 will be 1.4 cusecs. The residential waste water has pollution load (COD-500, BOD-250 and TSS-300) which may deteriorate the surface water – river Ravi water quality.

4. Considering population of area in 2035, the total municipal solid waste will be generated 12 tons/day.

5. Municipal solid waste produced from area if not managed properly, will cause aesthetic problems and also produce odor along with the spread of many diseases. Similarly, medical waste produced from medical facilities etc. if not properly managed and disposed, it can result in injury by cutting sharp material and infection with Hepatitis B, C, and HIV etc.

6. The main negative impact expected from the development in this area is the loss of 294 acres of agricultural land. Indirect negative impacts are loss of biodiversity, habitat loss and fragmentation.

7. The LDA will require land acquisition for widening and improvement of the existing roads, development of bypass roads for various existing town/villages etc, development of inter town and villages roads, development of new main roads, connecting roads, accessibility roads, sewerage systems including pumping stations, disposal stations, treatment plants, development of recreational areas, public utilities, buildings, administration buildings, toll stations and weighing stations.

8. Noise pollution will be generated from transportation and industrial zones. The average noise level generated from industrial units is 75 to 80 dBA. Noise
pollution may result in hearing-related diseases and may cause effects on local biodiversity. Development of area leads towards an increase in vehicles on roads. Which if not properly managed will result in wastage of time as well as air and noise pollution.

9. As the prime purpose of the amendments in master plan is not systemize the unplanned growth, so implementation of this plan at Proposed sites will improve the socio-cultural environment. Planned development will ensure the cost-effective provision of public utilities from government. It will improve the aesthetic beauty of the area and make certain the sustainable development of area.

Conclusion:

Again this area is being developed without any proper planning therefore, no infrastructure, standard, basic amenities etc. are available.

If the proposed amendment area remains as such then the unplanned urban growth related with increase in population will result in a miserable situation with high negative impact on environment and social settings of the area. However, few impacts will be generated due to development of the area which mainly includes land acquisition, loss of 298 acres agriculture land, generation of 1.4 cusecs of wastewater from residential area and 6.8tons/day of solid waste up till 2035 for which the mitigation for these impacts have been proposed in the next section. After the Environmental Analysis of site, it can be concluded that the proposed site is feasible for future development. Further, the implementation of the environmental mitigation measures, proper monitoring and compliance of the environmental standards/legislations will make the Project environmentally more sustainable.
6.5.3 District Kasur

K-01 (Kasur)

Existing Land Use Map

Notified Land Use Plan
Chapter 6: SCREENING OF POTENTIAL ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

Existing Landuse Characteristics

<table>
<thead>
<tr>
<th>Landuse</th>
<th>Area (Acres)</th>
<th>%age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing Built Up Area</td>
<td>4429.17</td>
<td></td>
</tr>
</tbody>
</table>

Proposed Landuse Characteristics

<table>
<thead>
<tr>
<th>Landuse</th>
<th>Area (Acres)</th>
<th>%age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed Residential Area</td>
<td>6193</td>
<td></td>
</tr>
<tr>
<td>Estimated Number of Housing Units (In 2035)</td>
<td>39290</td>
<td></td>
</tr>
</tbody>
</table>

Existing Population by 2015: 387142
Population (Expected by 2035): 662171

Required Infrastructure/ Utilities (in 2035)

<table>
<thead>
<tr>
<th>Residential</th>
<th>Estimated Per Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity (30% demand factor)</td>
<td>58 MW</td>
</tr>
<tr>
<td>Natural Gas (219 cubic meter/c/d)</td>
<td>3809763 Cubic meter/day</td>
</tr>
<tr>
<td>Water (300LPCD)</td>
<td>77.827 Cusecs</td>
</tr>
<tr>
<td>Wastewater Production</td>
<td>62.261 Cusecs</td>
</tr>
<tr>
<td>Solid Waste Production (0.85kg/c/d)</td>
<td>539.712 tons/day</td>
</tr>
</tbody>
</table>

Environmental Impacts due to proposed amendment K-1 Kasur Site:

1. Movement of vehicles generates CO, NOx, Sox and PM which may deteriorate the ambient air quality of the area and results in different health issues.

2. The growth rate of population, progressive migration of people from the nearby areas towards the area and the establishment of numerous industries has resulted in increase in water demand (77.8 cusecs for residential).

3. The continuous extraction of ground water will have impact on ground water aquifer which is already depleting at 2.5-3.0 feet per year.

4. Estimated production of waste water from residential units in 2035 will be 62.2 cusecs/day.

5. The residential waste water has pollution load (COD-500, BOD-250 and TSS-300) which may deteriorate the surface water – river Ravi water quality.
6. Considering population of area in 2035, the total municipal solid waste will be generated 539 tons/day.

7. Municipal solid waste produced from area if not managed properly, will cause aesthetic problems and also produce odor along with the spread of many diseases.

8. Similarly, medical waste produced from medical facilities etc. if not properly managed and disposed, it can result in injury by contaminated sharp cutting material and infection with Hepatitis B, C, and HIV etc.

9. The LDA will require land acquisition for proposed intra city roads, widening and improvement of the existing roads and development of bypass road for the site. The additional land will be required for sewerage systems including pumping stations, disposal stations, public utilities, buildings, administration buildings, toll stations and weighing stations.

10. Development of area leads towards increase in vehicles on roads which if not properly managed will result in wastage of time as well as air and noise pollution. Noise pollution will be generated from vehicular transportation. The average noise level generated on or near roads is 70 to 75 dBA. Noise pollution may result in hearing related diseases and may cause effects on local biodiversity.

11. The main negative impact expected from the development in this area is the loss of 6193 acres of agricultural land. Indirect negative impacts are loss of biodiversity, habitat loss and fragmentation.

12. As the prime purpose of the amendments in master plan is to systemize the unplanned rapid growth, so implementation of this plan at proposed sites will improve the socio-cultural environment. Planned development will ensure the cost effective provision of public utilities from government. The migration from smaller city towards bigger city will be decrease due to improvement in facilities in smaller city. It will improve the esthetic beauty of the area and make certain the sustainable development of area.
Conclusion:

Based on the existing conditions the locals are living in the unplanned areas without proper provision of basic amenities such as clear water, proper sewerage system, road or streets, low voltage etc.

If the proposed amendment area remains as such then the unplanned urban growth related with increase in population will result in miserable situation with high negative impact on environment and social settings of the area. However, few impacts will be generated due to development of the area which mainly includes land acquisition, loss of 6193 acres of agriculture land, generation of 62.261 cusecs of wastewater from residential area and 539.712 tons/day of solid waste up till 2035 for which the mitigation for these impacts have been proposed in the next section. After the Environmental Analysis of site, it can be concluded that the proposed site is feasible for future development. Further, the implementation of the environmental mitigation measures, proper monitoring and compliance of the environmental standards/legislations will make the Project environmentally more sustainable.

PA-K-02 (Mustafabad)
Proposed Land Use Plan

Existing Landuse Characteristics

<table>
<thead>
<tr>
<th>Landuse</th>
<th>Area (Acres)</th>
<th>%age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing Built Up Area</td>
<td>786.74</td>
<td>51.64</td>
</tr>
</tbody>
</table>

Proposed Landuse Characteristics

<table>
<thead>
<tr>
<th>Landuse</th>
<th>Area (Acres)</th>
<th>%age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed Industrial Area</td>
<td>87.14</td>
<td>5.72</td>
</tr>
<tr>
<td>Proposed Residential Area</td>
<td>1156</td>
<td>42.64</td>
</tr>
<tr>
<td>Estimated Numbers of housing units (in 2035)</td>
<td>9463</td>
<td></td>
</tr>
<tr>
<td>Estimated Numbers of Small Industrial Units (in 2035)</td>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>

Existing Population by 2015

- 67186

Population (Expected by 2035)

- 133428

Required Infrastructure/ Utilities (in 2035)

<table>
<thead>
<tr>
<th>Residential</th>
<th>Estimated Per Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity (30% demand factor)</td>
<td>14 MW</td>
</tr>
<tr>
<td>Natural Gas (219 cubic meter/c/d)</td>
<td>76767 Cubic meter/day</td>
</tr>
<tr>
<td>Water (300LPAD)</td>
<td>15.682 Cusecs</td>
</tr>
<tr>
<td>Wastewater Production</td>
<td>12.546 Cusecs</td>
</tr>
</tbody>
</table>
Solid Waste Production (0.85kg/c/d) 108.7541 tons/day

Industrial

<table>
<thead>
<tr>
<th>Electricity (100% demand factor)</th>
<th>425 MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Gas</td>
<td>85000 cubic meter/day</td>
</tr>
<tr>
<td>Water</td>
<td>10.42 Cusecs</td>
</tr>
<tr>
<td>Wastewater Production</td>
<td>8.3 Cusecs</td>
</tr>
<tr>
<td>CO₂ Emissions</td>
<td>680000 tons/year</td>
</tr>
<tr>
<td>Solid Waste Production</td>
<td>7.2 tons/day</td>
</tr>
</tbody>
</table>

(0.85kg*1000/c/d)

Environmental Impacts due to proposed amendment K-02 (Mustafabad) Site:

1. The operation of industries generates CO, NOx, Sox and PM which may deteriorate the ambient air quality of the area. The estimated equivalent carbon di oxide emissions from industry will be 680000 tones up till 2035.

2. The growth rate of population, progressive migration of people from the nearby areas towards the area and the establishment of numerous industries has resulted in increase in water demand (15.6 cusecs for residential and 10.42 cusecs for industrial). The continuous extraction of ground water will have negative impact on ground water aquifer which is already depleting at 2.5-3.0 feet per year.

3. Overlap of industries with residential area will have impact on people residing nearby area and will cause various health problems which include lung diseases, hear loss, diarrhea, intestinal problems etc.

4. Estimated production of waste water from residential units in 2035 will be 12.5 cusecs and from industrial units are 8.3 cusecs. The residential waste water has pollution load (COD-500, BOD-250 and TSS-300) which may deteriorate the surface water – river ravi water quality. The industrial waste water has pollution load (COD-1500, BOD-800 and TSS-600) which may deteriorate the surface water – river Ravi water quality.

5. Considering population of area in 2035, the total municipal solid waste will be generated 108 tons/day. Municipal solid waste produced from area if not managed properly, will cause aesthetic problems and also produce odor along
with the spread of many diseases. Similarly, medical waste produced from medical facilities etc. if not properly managed and disposed, it can result in injury by contaminated sharp material and infection with Hepatitis B, C, and HIV etc. From industries estimated solid waste production is 1870 tons/day. This can cause severe public as well as environmental health issues if not properly disposed.

6. Noise pollution will be generated from transportation and industrial zones. The average noise level generated from industrial units is 75 to 80 dBA. Noise pollution may results in hearing related diseases and may causes effects on local biodiversity. Development of area leads towards increase in vehicles on roads. Which if not properly managed will result in wastage of time as well as air and noise pollution.

7. The LDA will require land acquisition for widening and improvement of the existing roads, development of bypass roads for various existing town/villages etc, development of inter town and villages roads, development of new main roads, connecting roads, accessibility roads, sewerage systems including pumping stations, disposal stations, treatment plants, development of recreational areas, public utilities, buildings, administration buildings, toll stations and weighing stations.

8. The main negative impact expected from the development in this area is the loss of 1250 acres of agricultural land. Indirect negative impacts are loss of biodiversity, habitat loss and fragmentation.

9. As the prime purpose of the amendments in master plan is not systemize the unplanned rapid growth, so implementation of this plan at Proposed sites will improve the socio-cultural environment. Planned development will ensure the cost effective provision of public utilities from government. It will also improve the esthetic beauty of the area and make certain the sustainable development of area.

Conclusion:

As already mentioned that the above the proposed site is being used for the industrial and residential purpose without any planning or following any development
plan as per the local government rules. Therefore, the existing industrial and residential areas lacks proper provision of the basic infrastructure and facilities. Most of the area lacks proper sewerage system and drains. Hence the area is exploiting the resources and creating pollution and unhygienic conditions for the residents as well as the workers working in the illegally setup industries.

If the proposed amendment area remains as such then the unplanned urban growth related with increase in population will result in miserable situation with high negative impact on environment and social settings of the area. However, few impacts will be generated due to development of the area which mainly includes land acquisition, loss of 1250 acres agriculture land, generation of 12.546cusecs of wastewater from residential area and 108.7541 tons/day of solid waste up till 2035 for which the mitigation for these impacts have been proposed in the next section. After the Environmental Analysis of site, it can be concluded that the proposed site is feasible for future development. Further, the implementation of the environmental mitigation measures, proper monitoring and compliance of the environmental standards/legislations will make the Project environmentally more sustainable.

PA-K-03 (Industrial Estate)
Chapter 6: SCREENING OF POTENTIAL ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

Existing Land Use Map

Notified Land Use Plan

Proposed Landuse Characteristics

<table>
<thead>
<tr>
<th>Landuse</th>
<th>Area (Acres)</th>
<th>%age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed Industrial Area</td>
<td>1017</td>
<td>100</td>
</tr>
<tr>
<td>Estimated Numbers of Small Industrial Units</td>
<td>111</td>
<td></td>
</tr>
<tr>
<td>Estimated Numbers of Medium Industrial Units</td>
<td>22</td>
<td></td>
</tr>
</tbody>
</table>

Required Infrastructure/ Utilities (in 2035)

<table>
<thead>
<tr>
<th></th>
<th>Estimated Per Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrial</td>
<td></td>
</tr>
<tr>
<td>Electricity (100% demand factor)</td>
<td>13.775 MW</td>
</tr>
<tr>
<td>Natural Gas (150 cubic meter/i/d)</td>
<td>995000 cubic meter/day</td>
</tr>
<tr>
<td>Water</td>
<td>86.03 Cusecs</td>
</tr>
<tr>
<td>Wastewater Production</td>
<td>68.8 Cusecs</td>
</tr>
<tr>
<td>CO₂ Emissions</td>
<td>7740000 tons/year</td>
</tr>
<tr>
<td>Solid Waste Production</td>
<td>84.5</td>
</tr>
</tbody>
</table>

Environmental Impacts due to proposed amendment K-03 (Industrial Estate)

Site:
1. The operation of industry generates CO, NOx, Sox and PM which may deteriorate the ambient air quality of the area. The estimated carbon dioxide emissions from industry will be 7740 million tones up till 2035.

2. The growth rate of population, progressive migration of people from the nearby areas towards the area and the establishment of numerous industries has resulted in increase in water demand (86.03 cusecs for industrial). The continuous extraction of ground water will have negative impact on ground water aquifer which is already depleting at 2.5-3.0 feet per year.

3. Overlap of industries with residential area will have impact on people residing nearby area and will cause various health problems which include lung diseases, hear loss, diarrhea, intestinal problems etc.

4. Estimated production of waste water from industrial units is 68.82 cusecs. The industrial waste water has pollution load (COD-1500, BOD-800 and TSS-600) which may deteriorate the surface water – river Ravi water quality.

5. Solid waste produced from area if not managed properly, will cause aesthetic problems and also produce odor along with the spread of many diseases. Solid waste produced from area if not managed properly, will cause aesthetic problems and also produce odor along with the spread of many diseases. From industries estimated solid waste production is 1870 tons/day. This can cause severe public as well as environmental health issues if not properly disposed.

6. Medical waste produced from medical facilities etc. if not properly managed and disposed, it can result in injury by contaminated sharp material and infection with Hepatitis B, C, and HIV etc.

7. The LDA will require land acquisition for widening and improvement of the existing roads, development of bypass roads for various existing town/villages etc, development of inter town and villages roads, development of new main roads, connecting roads, accessibility roads, sewerage systems including pumping stations, disposal stations, treatment plants, development of recreational areas, public utilities, buildings, administration buildings, toll stations and weighing stations.
8. Noise pollution will be generated from transportation and industrial zones. The average noise level generated from industrial units is 75 to 80 dBA. Noise pollution may result in hearing related diseases and may cause effects on local biodiversity.

9. Development of area leads towards increase in vehicles on roads. Which if not properly managed will result in wastage of time as well as air and noise pollution.

10. The main impact expected from the development in this area is the loss of 1117 acres of agricultural land. Indirect impacts are loss of biodiversity, habitat loss and fragmentation.

11. As the prime purpose of the amendments in master plan is not systemize the unplanned growth, so implementation of this plan at proposed sites will improve the socio-cultural environment. Planned development will ensure the cost effective provision of public utilities from government.

12. It will improve the esthetic beauty of the area and make certain the sustainable development of area.

Conclusion:

As already mention that the proposed site is being used for the industrial use without any planning or following any development plan as per the local government rules.

If the proposed amendment area remains as such then the unplanned industrial growth related with increase in population will result in miserable situation with high negative impact on environment and social settings of the area. However, few impacts will be generated due to development of the area which mainly includes land acquisition, loss of 1117 acres agriculture land, generation of 68.8 cusecs of wastewater from industrial area and 84.5 tons/day of solid waste up till 2035 for which the mitigation for these impacts have been proposed in the next section. After the Environmental Analysis of site, it can be concluded that the proposed site is feasible for future development. Further, the implementation of the environmental mitigation measures, proper monitoring and compliance of the environmental standards/legislations will make the Project environmentally more sustainable.
Chapter 6: SCREENING OF POTENTIAL ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

PK-K-04 (KhudianKhas)

Proposed Land Use Map

Notified Land Use Plan

ProposedLanduse Characteristics

<table>
<thead>
<tr>
<th>Landuse</th>
<th>Area (Acres)</th>
<th>%age</th>
</tr>
</thead>
</table>
Environmental Impacts due to proposed amendment K-04 (KhudianKhas) Site:

1. The movement of vehicles generates CO, NOx, Sox and PM which may deteriorate the ambient air quality of the area and results in different public health issues.

2. Noise pollution will be generated from transportation and industrial zones. The average noise level generated from industrial units is 75 to 80 dBA. Noise pollution may results in hearing related diseases and may causes effects on local biodiversity. Development of area leads towards increase in vehicles on roads. Which if not properly managed will result in wastage of time as well as air and noise pollution.

3. Estimated production of waste water from residential units in 2035 will be 7.74 cusecs. The residential waste water has pollution load (COD-500, BOD-250 and TSS-300) which may deteriorate the surface water – river Ravi water quality.

4. Considering population of area in 2035, the total municipal solid waste will be generated 65 tons/day. Municipal solid waste produced from area if not managed properly, will cause aesthetic problems and also produce odor along with other environmental impacts.
with the spread of many diseases. Similarly, medical waste produced from medical facilities etc. if not properly managed and disposed, it can result in injury by cutting sharp material and infection with Hepatitis B, C, and HIV etc.

5. The growth rate of population, progressive migration of people from the nearby areas towards the area and the establishment of numerous industries has resulted in increase in water demand (9.74 cusecs for residential). The continuous extraction of ground water will have impact on ground water aquifer which is already depleting at 2.5-3.0 feet per year.

6. The LDA will require land acquisition for widening and improvement of the existing roads, development of bypass roads for various existing town/villages etc, development of inter town and villages roads, development of new main roads, connecting roads, accessibility roads, sewerage systems including pumping stations, disposal stations, treatment plants, development of recreational areas, public utilities, buildings, administration buildings, toll stations and weighing stations.

7. As the prime purpose of the amendments in master plan is not systemize the unplanned rapid growth, so implementation of this plan at proposed sites will improve the socio-cultural environment. Planned development will ensure the cost effective provision of public utilities from government. It will improve the esthetic beauty of the area and make certain the sustainable development of area.

8. The main negative impact expected from the development in this area is the loss of 710 acres of agricultural land. Indirect negative impacts are loss of biodiversity, habitat loss and fragmentation.

Conclusion:

Again this area is being developed without any proper planning therefore, no infrastructure, standard, basic amenities etc. are available.

If the proposed amendment area remains as such then the unplanned urban growth related with increase in population will result in miserable situation with high negative impact on environment and social settings of the area. However, few impacts will be
generated due to development of the area which mainly includes land acquisition, loss of 710 acres agriculture land, generation of 7.79 cusecs of wastewater from industrial area and 67.592 tons/day of solid waste up till 2035 for which the mitigation for these impacts have been proposed in the next section. After the Environmental Analysis of site, it can be concluded that the proposed site is feasible for future development. Further, the implementation of the environmental mitigation measures, proper monitoring and compliance of the environmental standards/legislations will make the Project environmentally more sustainable.

PK- K-05 (Rao Khan Wala)

K-05 (Rao Khan Wala)

[Existing Land Use Map]
Notified Land Use Plan

Existing Landuse Characteristics

<table>
<thead>
<tr>
<th>Landuse</th>
<th>Area (Acres)</th>
<th>%age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing Built Up Area</td>
<td>162.01</td>
<td>24.73</td>
</tr>
</tbody>
</table>

Proposed Landuse Characteristics

<table>
<thead>
<tr>
<th>Landuse</th>
<th>Area (Acres)</th>
<th>%age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed Residential Area</td>
<td>331</td>
<td>75.27</td>
</tr>
</tbody>
</table>

Estimated Numbers of Housing Units (In Units)

- 1784

Existing Population by 2015

- 15577

Population (Expected by 2035)

- 28044

Required Infrastructure/ Utilities (in 2035)

<table>
<thead>
<tr>
<th>Type</th>
<th>Estimated Per Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential Electricity (30% demand factor)</td>
<td>2.02 MW</td>
</tr>
<tr>
<td>Natural Gas (219 cubic meter/c/d)</td>
<td>18118.8 cubic meter/day</td>
</tr>
<tr>
<td>Water (300LPCD)</td>
<td>3.701 cusecs</td>
</tr>
<tr>
<td>Wastewater Production</td>
<td>2.961 cusecs</td>
</tr>
<tr>
<td>Solid Waste Production (0.85kg/c/d)</td>
<td>25.6683 tons/day</td>
</tr>
</tbody>
</table>

321
Environmental Impacts due to proposed amendment K-05 (Rao Khan Wala)

Site:

1. The movement of vehicles generates CO, NOx, Sox and PM which may deteriorate the ambient air quality of the area and may cause serious public health issues.

2. Considering population of area in 2035, the total municipal solid waste will be generated 25 tons/day.

3. Municipal solid waste produced from area if not managed properly, will cause aesthetic problems and also produce odor along with the spread of many diseases. Similarly, medical waste produced from medical facilities etc. if not properly managed and disposed, it can result in injury by cutting sharp material and infection with Hepatitis B, C, and HIV etc. From industries estimated solid waste production is 1870 tons/day. This can cause severe public as well as environmental health issues if not properly disposed.

4. Noise pollution will be generated from transportation and commercial zones. The average noise level generated from industrial units is 75 to 80 dBA. Noise pollution may results in hearing related diseases and may causes effects on local biodiversity. Development of area leads towards increase in vehicles on roads. Which if not properly managed will result in wastage of time as well as air and noise pollution.

5. The growth rate of population, progressive migration of people from the nearby areas towards the area and the establishment of numerous industries has resulted in increase in water demand (3.701 cusecs for residential). The continuous extraction of ground water will have negative impact on ground water aquifer which is already depleting at 2.5-3.0 feet per year.

6. Estimated production of waste water from residential units in 2035 will be 2.961 cusecs. The residential waste water has pollution load (COD-500, BOD-250 and TSS-300) which may deteriorate the surface water – river Ravi water quality.
Chapter 6: SCREENING OF POTENTIAL ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

7. The main negative impact expected from the development in this area is the loss of 331 acres of agricultural land. Indirect negative impacts are loss of biodiversity, habitat loss and fragmentation.

8. As the prime purpose of the amendments in master plan is not systemize the unplanned growth, so implementation of this plan at Proposed sites will improve the socio-cultural environment. Planned development will ensure the cost effective provision of public utilities from government. It will improve the esthetic beauty of the area and make certain the sustainable development of area.

9. The LDA will require land acquisition for widening and improvement of the existing roads, development of bypass roads for various existing town/villages etc, development of inter town and villages roads, development of new main roads, connecting roads, accessibility roads, sewerage systems including pumping stations, disposal stations, treatment plants, development of recreational areas, public utilities, buildings, administration buildings, toll stations and weighing stations.

Conclusion:

The existing land use represent an unplanned haphazard residential growth which lacks provision of basic infrastructure and amenities without any legal cover or following any local approved plan.

If the proposed amendment area remains as such then the unplanned urban growth related with increase in population will result in miserable situation with high negative impact on environment and social settings of the area. However, few impacts will be generated due to development of the area which mainly includes land acquisition, loss of 331 acres agriculture land, generation of 2.961 cusecs of wastewater from residential area and 25.6683 tons/day of solid waste up till 2035 for which the mitigation for these impacts have been proposed in the next section. After the Environmental Analysis of site, it can be concluded that the proposed site is feasible for future development. Further, the implementation of the environmental mitigation measures, proper monitoring and compliance of the environmental standards/legislations will make the Project environmentally more sustainable.
Amendment in Master Plan for Lahore Division (The Project)
Environment Impact Assessment (EIA) Report
Chapter 6: SCREENING OF POTENTIAL ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

PA-K-06(Raja Jang)

28033

Proposed Population (2035)
39505

Total Area of Site
454 Acres

Residential
454 Acres

Required Infrastructure/ Utilities (in 2035)
Estimated Per Day

<table>
<thead>
<tr>
<th>Residential</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimated Number of Houses</td>
<td>1639</td>
</tr>
<tr>
<td>Electricity (based on 30% demand factor)</td>
<td>2.5 MW</td>
</tr>
<tr>
<td>Natural Gas (based on 219 cubic meter/c/y)</td>
<td>23703 cubic m/day</td>
</tr>
<tr>
<td>Water (based on 300LPCD)</td>
<td>4.8 Cusecs</td>
</tr>
<tr>
<td>Wastewater Production</td>
<td>3.84 Cusecs</td>
</tr>
<tr>
<td>Solid Waste Production (0.85kg/c/d)</td>
<td>33 Tons/day</td>
</tr>
</tbody>
</table>

Environmental Impacts due to proposed amendment K-06(Raja Jang) Site:
1. The vehicular traffic from residential area will generate CO, NOx, PM and CO2 emissions which may have variety of health impacts to the commuters and persons living in residencies.

2. The growth rate of population, progressive migration of people from the nearby areas towards the area and the establishment of numerous industries has resulted in increase in water demand (4.8 cusecs for residential area. The continuous extraction of ground water will have impact on ground water aquifer which is already depleting at 2.5-3.0 feet per year.

3. Estimated production of waste water from residential units till 2035 will be 3.84 cusecs. The residential waste water has pollution load (COD-500, BOD-250 and TSS-300) which may deteriorate the surface water – river Ravi water quality

4. Considering population of area in 2035, the total municipal solid waste will be generated 33 tons/day. Municipal solid waste produced from area if not managed properly, will cause aesthetic problems and also produce odor along with the spread of many diseases. Similarly, medical waste produced from medical facilities etc. if not properly managed and disposed, it can result in injury by cutting sharp material and infection with Hepatitis B, C, and HIV etc.

5. The LDA will require land acquisition for widening and improvement of the existing roads, development of bypass roads for various existing town/villages etc, development of inter town and villages roads, development of new main roads, connecting roads, accessibility roads, sewerage systems including pumping stations, disposal stations, treatment plants, development of recreational areas, public utilities, buildings, administration buildings, toll stations and weighing stations.

6. Noise pollution will be generated from vehicles travelling in the residential area with noise level 60 to 70 dBA. Noise pollution may results in hearing related diseases and may causes effects on local biodiversity. Development of area leads towards increase in vehicles on roads. Which if not properly managed will result in wastage of time as well as air and noise pollution.
Chapter 6: SCREENING OF POTENTIAL ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

7. The main negative impact expected from the development in this area is the loss of 454 acres of agricultural land. The other negative impacts are loss of biodiversity, habitat loss and fragmentation. The indirect impact include loss of livelihood to the peoples belongs to the agriculture activities.

8. As the prime purpose of the amendments in master plan is not systemize the unplanned rapid growth, so implementation of this plan at proposed sites will improve the socio-cultural environment. Planned development will ensure the cost effective provision of public utilities from government. It will improve the esthetic beauty of the area and make certain the sustainable development of area.

Conclusion:

Based on the existing conditions the locals are living in the unplanned areas without proper provision of basic amenities such as clear water, proper sewerage system, road or streets, low voltage etc.

If the proposed amendment area remains as such then the unplanned urban growth related with increase in population will result in miserable situation with high negative impact on environment and social settings of the area. However, few impacts will be generated due to development of the area which mainly includes land acquisition, loss of 454 acres agriculture land, generation of 3.84 cusecs of wastewater from residential area and 33 tons/day of solid waste up till 2035 for which the mitigation for these impacts have been proposed in the next section. After the Environmental Analysis of site, it can be concluded that the proposed site is feasible for future development. Further, the implementation of the environmental mitigation measures, proper monitoring and compliance of the environmental standards/legislations will make the Project environmentally more sustainable.
Proposed Population (2035) 1,07,539
Total Area of Site 2351 Acres
Residential Area 1427 Acres

<table>
<thead>
<tr>
<th>Required Infrastructure/ Utilities (in 2035)</th>
<th>Estimated Per Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential Estimated Number of Houses</td>
<td>6416</td>
</tr>
<tr>
<td>Electricity (based on 30% demand factor)</td>
<td>9 MW</td>
</tr>
<tr>
<td>Natural Gas (based on 219 cubic meter/c/y)</td>
<td>64523 cubic m/day</td>
</tr>
<tr>
<td>Water (based on 300LPCD)</td>
<td>13 Cusecs</td>
</tr>
<tr>
<td>Wastewater Production</td>
<td>10.4 Cusecs</td>
</tr>
<tr>
<td>Solid Waste Production (0.85kg/c/d)</td>
<td>91 Tons/day</td>
</tr>
</tbody>
</table>
Environmental Impacts due to proposed amendment K-07(Kot RadhaKishan)

Site:

1. The Vehicular traffic from residential area will generate CO, NOx, PM and CO2 emissions which may have variety of health impacts to the commuters and persons living in residencies.

2. The growth rate of population, progressive migration of people from the nearby areas towards the area and the establishment of numerous industries has resulted in increase in water demand (13 cusecs for residential area. The continuous extraction of ground water will have impact on ground water aquifer which is already depleting at 2.5-3.0 feet per year.

3. Noise pollution will be generated from vehicles travelling in the residential area with noise level 60 to 70 dBA. Noise pollution may results in hearing related diseases and may causes effects on local biodiversity. Development of area leads towards increase in vehicles on roads. Which if not properly managed will result in wastage of time as well as air and noise pollution.

4. Estimated production of waste water from residential units till 2035 will be 10.4 cusecs. The residential waste water has pollution load (COD-500, BOD-250 and TSS-300) which may deteriorate the surface water – river Ravi water quality.

5. Considering population of area in 2035, the total municipal solid waste will be generated 91 tons/day. Municipal solid waste produced from area if not managed properly, will cause aesthetic problems and also produce odor along with the spread of many diseases. Similarly, medical waste produced from medical facilities etc. if not properly managed and disposed, it can result in injury by cutting sharp material and infection with Hepatitis B, C, and HIV etc.

6. The LDA will require land acquisition for widening and improvement of the existing roads, development of bypass roads for various existing town/villages etc, development of inter town and villages roads, development of new main roads, connecting roads, accessibility roads, sewerage systems including pumping stations, disposal stations, treatment plants, development of
recreational areas, public utilities, buildings, administration buildings, toll stations and weighing stations.

7. As the prime purpose of the amendments in master plan is not systemize the unplanned rapid growth, so implementation of this plan at proposed sites will improve the socio-cultural environment. Planned development will ensure the cost effective provision of public utilities from government. It will improve the esthetic beauty of the area and make certain the sustainable development of area.

8. The main negative impact expected from the development in this area is the loss of 1427 acres of agricultural land. The other negative impacts are loss of biodiversity, habitat loss and fragmentation. The indirect impact include loss of livelihood to the peoples belongs to the agriculture activities.

Conclusion:

The existing land use represent an unplanned haphazard residential growth which lacks provision of basic infrastructure and amenities without any legal cover or following any local approved plan.

If the proposed amendment area remains as such then the unplanned urban growth related with increase in population will result in miserable situation with high negative impact on environment and social settings of the area. However, few impacts will be generated due to development of the area which mainly includes land acquisition, loss of 1427 acres agriculture land, generation of 10.4 cusecs of wastewater from residential area and 91 tons/day of solid waste up till 2035 for which the mitigation for these impacts have been proposed in the next section. After the Environmental Analysis of site, it can be concluded that the proposed site is feasible for future development. Further, the implementation of the environmental mitigation measures, proper monitoring and compliance of the environmental standards/legislations will make the Project environmentally more sustainable.
Chapter 6: SCREENING OF POTENTIAL ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

PA-K-08 (Changa Manga)

Proposed Population (2035) 17719

Total Area of Site 542 Acres

Residential 255 Acres

Required Infrastructure/ Utilities Estimated Per Day
(in 2035)

Residential

Estimated Number of Houses 1127

Electricity (based on 30% demand factor) 1.6 MW

Natural Gas (based on 219 cubic meter/c/y) 10631 cubic m/day
Chapter 6: SCREENING OF POTENTIAL ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

<table>
<thead>
<tr>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water (based on 300LPCD)</td>
<td>2.17 Cusecs</td>
</tr>
<tr>
<td>Wastewater Production</td>
<td>1.736 Cusecs</td>
</tr>
<tr>
<td>Solid Waste Production (0.85kg/c/d)</td>
<td>15 Tons/day</td>
</tr>
</tbody>
</table>

Environmental Impacts due to proposed amendment K-08(Changa Manga)

Site:

1. The Vehicular traffic from residential area will generate CO, NOx, PM and CO2 emissions which may have variety of health impacts to the commuters and persons living in residencies.

2. The growth rate of population, progressive migration of people from the nearby areas towards the area and the establishment of numerous industries has resulted in increase in water demand (2.1 cusecs for residential area. The continuous extraction of ground water will have impact on ground water aquifer which is already depleting at 2.5-3.0 feet per year.

3. Estimated production of waste water from residential units till 2035 will be 1.7 cusecs. The residential waste water has pollution load (COD-500, BOD-250 and TSS-300) which may deteriorate the surface water – river Ravi water quality.

4. Considering population of area in 2035, the total municipal solid waste will be generated 15 tons/day.

5. Municipal solid waste produced from area if not managed properly, will cause aesthetic problems and also produce odor along with the spread of many diseases. Similarly, medical waste produced from medical facilities etc. if not properly managed and disposed, it can result in injury by cutting sharp material and infection with Hepatitis B, C, and HIV etc.

6. Noise pollution will be generated from vehicles travelling in the residential area with noise level 60 to 70 dBA. Noise pollution may results in hearing related diseases and may causes effects on local biodiversity. Development of area leads towards increase in vehicles on roads. Which if not properly managed will result in wastage of time as well as air and noise pollution.
7. The LDA will require land acquisition for widening and improvement of the existing roads, development of bypass roads for various existing town/villages etc, development of inter town and villages roads, development of new main roads, connecting roads, accessibility roads, sewerage systems including pumping stations, disposal stations, treatment plants, development of recreational areas, public utilities, buildings, administration buildings, toll stations and weighing stations.

8. The main negative impact expected from the development in this area is the loss of 255 acres of agricultural land. The other negative impacts are loss of biodiversity, habitat loss and fragmentation. The indirect impact include loss of livelihood to the peoples belongs to the agriculture activities.

9. As the prime purpose of the amendments in master plan is not systemize the unplanned rapid growth, so implementation of this plan at proposed sites will improve the socio-cultural environment. Planned development will ensure the cost effective provision of public utilities from government. It will improve the esthetic beauty of the area and make certain the sustainable development of area.

Conclusion:

Again this area is being developed without any proper planning therefore, no infrastructure, standard, basic amenities etc. are available.

If the proposed amendment area remains as such then the unplanned urban growth related with increase in population will result in miserable situation with high negative impact on environment and social settings of the area. However, few impacts will be generated due to development of the area which mainly includes land acquisition, loss of 255 acres agriculture land, generation of 1.736 cusecs of wastewater from residential area and 15 tons/day of solid waste up till 2035 for which the mitigation for these impacts have been proposed in the next section. After the Environmental Analysis of site, it can be concluded that the proposed site is feasible for future development. Further, the implementation of the environmental mitigation measures, proper monitoring and compliance of the environmental standards/legislations will make the Project environmentally more sustainable.
Current Population (2015) -

Proposed Population (2035) 139850

Total Area of Site 5148 Acres

Residential Area 2797 Acres

<table>
<thead>
<tr>
<th>Required Infrastructure/ Utilities (in 2035)</th>
<th>Estimated Per Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential Estimated Number of Housing Units</td>
<td>19978</td>
</tr>
<tr>
<td>Electricity (based on 30% demand factor)</td>
<td>29.0 MW</td>
</tr>
<tr>
<td>Natural Gas (based on 219 cubic meter/c/y)</td>
<td>30627150 cubic m/day</td>
</tr>
<tr>
<td>Water (based on 300LPCD)</td>
<td>17 Cusecs</td>
</tr>
<tr>
<td>Wastewater Production</td>
<td>13.6 Cusecs</td>
</tr>
<tr>
<td>Solid Waste Production (0.85kg/c/d)</td>
<td>118 Tons/day</td>
</tr>
</tbody>
</table>
Environmental Impacts due to proposed amendment K-09 (BhaiPheru) Site:

1. Potential risk of flooding of this site due to river Ravi. The flood is the serious threat that can cause damage to property, livestock, infrastructure and more important life loss.

2. Estimated production of waste water from residential units till 2035 will be 13.6 cusecs. The residential waste water has pollution load (COD-500, BOD-250 and TSS-300) which may deteriorate the surface water – river Ravi water quality.

3. Considering population of area in 2035, the total municipal solid waste will be generated 118 tons/day.

4. Municipal solid waste produced from area if not managed properly, will cause aesthetic problems and also produce odor along with the spread of many diseases. Similarly, medical waste produced from medical facilities etc. if not properly managed and disposed, it can result in injury by contaminated sharp material and infection with Hepatitis B, C, and HIV etc.

5. The growth rate of population, progressive migration of people from the nearby areas towards the area and the establishment of numerous industries has resulted in increase in water demand 17 cusecs. The continuous extraction of ground water will have impact on ground water aquifer which is already depleting at 2.5-3.0 feet per year.

6. Noise pollution will be generated from vehicles travelling and from industrial zones. The average noise level generated from industrial units is 70 to 80 dBA. Noise pollution may results in hearing related diseases and may causes effects on local biodiversity. Development of area leads towards increase in vehicles on roads. Which if not properly managed will result in wastage of time as well as air and noise pollution.

7. The main negative impact expected from the development in this area is the loss of 2797 acres of agricultural land. The other negative impacts are loss of
Chapter 6: SCREENING OF POTENTIAL ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

biodiversity, habitat loss and fragmentation. The indirect impact include loss of livelihood to the peoples belongs to the agriculture activities.

8. As the prime purpose of the amendments in master plan is not systemize the unplanned rapid growth, so implementation of this plan at Proposed sites will improve the socio-cultural environment. Planned development will ensure the cost effective provision of public utilities from government. It will improve the esthetic beauty of the area and make certain the sustainable development of area.

9. The LDA will require land acquisition for widening and improvement of the existing roads, development of bypass roads for various existing town/villages etc, development of inter town and villages roads, development of new main roads, connecting roads, accessibility roads, sewerage systems including pumping stations, disposal stations, treatment plants, development of recreational areas, public utilities, buildings, administration buildings, toll stations and weighing stations.

Conclusion:

As already mentioned that the above the proposed site is being used for the industrial and residential purpose without any planning or following any development plan as per the local government rules. Therefore, the existing industrial and residential areas lacks proper provision of the basic infrastructure and facilities. Most of the area lacks proper sewerage system and drains. Hence the area is exploiting the resources and creating pollution and unhygienic conditions for the residents as well as the workers working in the illegally setup industries.

If the proposed amendment area remains as such then the unplanned urban growth related with increase in population will result in miserable situation with high negative impact on environment and social settings of the area. However, few impacts will be generated due to development of the area which mainly includes land acquisition, loss of 2792 acres agriculture land, generation of 17 cusecs of wastewater and 118 tons/day of solid waste from residential area. The site is also prone to the flood hazard in accordance with hydrological study attached as Appendix- III. The mitigations for flood should have been followed in order to develop the site.
After the Environmental Analysis of site, it can be concluded that the proposed site is feasible for future development if only mitigations for flood hazard have been followed. Further, the implementation of the environmental mitigation measures, proper monitoring and compliance of the environmental standards/legislations will make the Project environmentally more sustainable.

PA-K-10 and K 11 (Jamber and Jamber Industrial Estate)

Maps of Jamber
20001

Proposed Population (2035)
36054

Total Area of Site
2832 Acres

Area Proposed Residential
441 Acres

Required Infrastructure/ Utilities (in 2035)

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Estimated Per Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential Estimated Number of Houses</td>
<td>2293</td>
</tr>
<tr>
<td>Electricity (based on 30% demand factor)</td>
<td>5.1 MW</td>
</tr>
<tr>
<td>Natural Gas (based on 219 cubic meter/c/y)</td>
<td>21632.4 cubic m/day</td>
</tr>
<tr>
<td>Water (based on 300LPCD)</td>
<td>4.4 Cusecs</td>
</tr>
<tr>
<td>Wastewater Production</td>
<td>3.52 Cusecs</td>
</tr>
<tr>
<td>Solid Waste Production (0.85kg/c/d)</td>
<td>30 Tons/day</td>
</tr>
</tbody>
</table>

Jamber Industrial Estate

![Map of Jamber Industrial Estate]
Chapter 6: SCREENING OF POTENTIAL ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

Industrial

| Estimated Number of Medium industrial Units | 27 |
| Estimated Number of Heavy Industrial Units | 08 |

Electricity (100% demand factor)	150 MW
Natural Gas	1020000 cubic m/day
Water	98 Cusecs
Wastewater Production	78 Cusecs
Solid Waste Production (0.85kg*1000/c/d)	80 Tons/day

Environmental Impacts due to proposed amendment K-10 and K 11(Jamber and Jamber Industrial Estate) Site:

1. The growth rate of population, progressive migration of people from the nearby areas towards the area and the establishment of numerous industries has resulted in increase in water demand (4.4 cusecs for residential and 98 cusecs for industrial). The continuous extraction of ground water will have negative impact on ground water aquifer which is already depleting at 2.5-3.0 feet per year.

2. Estimated production of waste water from residential units till 2035 will be 3.52 cusecs and from industrial units are 78 cusecs. The residential waste water has pollution load (COD-500, BOD-250 and TSS-300) which may deteriorate the surface water – river Ravi water quality. The industrial waste water has pollution load (COD-2500, BOD-1000 and TSS-900) which may deteriorate the surface water – river Ravi water quality.

3. Overlap of industries with residential area will have impact on people residing nearby area and will cause various health problems which include lung diseases, hear loss, diarrhea, intestinal problems etc.

4. The operation of industry generates CO, NOx, Sox and PM which may deteriorate the ambient air quality of the area. The greenhouse gasses estimated CO2 equivalent emissions from this industry area will be 8.45 million tones up till 2035.
5. The vehicular traffic from residential and industrial area will generate CO, NOx, PM and CO2 emissions which may have variety of health impacts to the commuters and persons living in residencies.

6. Considering population of area in 2035, the total municipal solid waste will be generated 30 tons/day.

7. Municipal solid waste produced from area if not managed properly, will cause aesthetic problems and also produce odor along with the spread of many diseases. Similarly, medical waste produced from medical facilities etc. if not properly managed and disposed, it can result in injury by cutting sharp material and infection with Hepatitis B, C, and HIV etc. From industries estimated solid waste production is 80 tons/day. This can cause severe public as well as environmental health issues if not properly disposed.

8. Noise pollution will be generated from vehicles travelling and from industrial zones. The average noise level generated from industrial units is 70 to 80 dBA. Noise pollution may results in hearing related diseases and may causes effects on local biodiversity. Development of area leads towards increase in vehicles on roads. Which if not properly managed will result in wastage of time as well as air and noise pollution.

9. The LDA will require land acquisition for widening and improvement of the existing roads, development of bypass roads for various existing town/villages etc, development of inter town and villages roads, development of new main roads, connecting roads, accessibility roads, sewerage systems including pumping stations, disposal stations, treatment plants, development of recreational areas, public utilities, buildings, administration buildings, toll stations and weighing stations.

10. The main negative impact expected from the development in this area is the loss of 2700 acres of agricultural land. The other negative impacts are loss of biodiversity, habitat loss and fragmentation. The indirect impact include loss of livelihood to the peoples belongs to the agriculture activities.

11. As the prime purpose of the amendments in master plan is not systemize the unplanned rapid growth, so implementation of this plan at proposed sites will
improve the socio-cultural environment. Planned development will ensure the
cost effective provision of public utilities from government. It will improve the
esthetic beauty of the area and make certain the sustainable development of
area.

Conclusion:

The existing land use represent an unplanned haphazard residential and industrial
growth which lacks provision of basic infrastructure and amenities without any legal
cover or following any local approved plan.

If the proposed amendment area remains as such then the unplanned urban growth
related with increase in population will result in miserable situation with high negative
impact on environment and social settings of the area. However, few impacts will be
generated due to development of the area which mainly includes land acquisition,
loss of 2700 acres agriculture land, generation of 3.52 cusecs of wastewater and 30
tons/day of solid waste from residential area and generation of 78 cusecs of
wastewater and 80 tons/day of solid waste from industrial area up till 2035. The
greenhouse gasses estimated CO2 equivalent emissions from industrial area will be
8.45 million tones up till 2035 for which the mitigation for these impacts have been
proposed in the next section. After the Environmental Analysis of site, it can be
concluded that the proposed site is feasible for future development. Further, the
implementation of the environmental mitigation measures, proper monitoring and
compliance of the environmental standards/legislations will make the Project
environmentally more sustainable.
PA-K-12 (Chunian)

Proposed Population (2035) 1,37,897
Total Area of Site 3701 Acres
Residential Area 2128 Acres

<table>
<thead>
<tr>
<th>Required Infrastructure/ Utilities (in 2035)</th>
<th>Estimated Per Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td></td>
</tr>
<tr>
<td>Estimated Number of Houses</td>
<td>9309</td>
</tr>
<tr>
<td>Electricity (based on 30% demand factor)</td>
<td>13 MW</td>
</tr>
<tr>
<td>Natural Gas (based on 219 cubic meter/c/y)</td>
<td>82738 cubic m/day</td>
</tr>
<tr>
<td>Water (based on 300LPCD)</td>
<td>16 Cusecs</td>
</tr>
<tr>
<td>Wastewater Production</td>
<td>12.8 Cusecs</td>
</tr>
<tr>
<td>Solid Waste Production (0.85kg/c/d)</td>
<td>117 Tons/day</td>
</tr>
</tbody>
</table>

Industrial
Estimated Number of Medium industrial 13 Units
Chapter 6: SCREENING OF POTENTIAL ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

<table>
<thead>
<tr>
<th>Resource</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity (100% demand factor)</td>
<td>6.5 MW</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>26000 cubic m/day</td>
</tr>
<tr>
<td>Water</td>
<td>31 Cusecs</td>
</tr>
<tr>
<td>Wastewater Production</td>
<td>24 Cusecs</td>
</tr>
<tr>
<td>Solid Waste Production (0.85kg*1000/c/d)</td>
<td>22 Tons/day</td>
</tr>
</tbody>
</table>

Environmental Impacts due to proposed amendment K-12 (Chunian) Site:

1. The operation of industry generates CO, NOx, Sox and PM which may deteriorate the ambient air quality of the area. The greenhouse gasses estimated CO2 equivalent emissions from this The Vehicular traffic from residential and industrial area will generate CO, NOx, PM and CO2 emissions which may have variety of health impacts to the commuters and persons living in residencies industry area will be 1.95 million tones up till 2035.

2. The Vehicular traffic from residential and industrial area will generate CO, NOx, PM and CO2 emissions which may have variety of health impacts to the commuters and persons living in residencies.

3. The growth rate of population, progressive migration of people from the nearby areas towards the area and the establishment of numerous industries has resulted in increasein water demand (16 cusecs for residential and 31 cusecs for industrial). The continuous extraction of ground water will have impact on ground water aquifer which is already depleting at 2.5-3.0 feet per year.

4. Overlap of industries with residential area will have impact on people residing nearby area and will cause various health problems which include lung diseases, hear loss, diarrhea, intestinal problems etc.

5. Considering population of area in 2035, the total municipal solid waste will be generated 117 tons/day.

6. Municipal solid waste produced from area if not managed properly, will cause aesthetic problems and also produce odor along with the spread of many diseases. Similarly, medical waste produced from medical facilities etc. if not properly managed and disposed, it can result in injury by cutting sharp material and infection with Hepatitis B, C, and HIV etc. From industries
estimated solid waste production is 22 tons/day. This can cause severe public as well as environmental health issues if not properly disposed.

7. Noise pollution will be generated from vehicles travelling and from industrial zones. The average noise level generated from industrial units is 70 to 80 dBA. Noise pollution may results in hearing related diseases and may causes effects on local biodiversity. Development of area leads towards increase in vehicles on roads. Which if not properly managed will result in wastage of time as well as air and noise pollution.

8. The LDA will require land acquisition for widening and improvement of the existing roads, development of bypass roads for various existing town/villages etc, development of inter town and villages roads, development of new main roads, connecting roads, accessibility roads, sewerage systems including pumping stations, disposal stations, treatment plants, development of recreational areas, public utilities, buildings, administration buildings, toll stations and weighing stations.

9. Estimated production of waste water from residential units till 2035 will be 12.8 cusecs and from industrial units are 24 cusecs. The residential waste water has pollution load (COD-500, BOD-250 and TSS-300) which may deteriorate the surface water – river Ravi water quality. The industrial waste water has pollution load (COD-2500, BOD-1000 and TSS-900) which may deteriorate the surface water – river Ravi water quality.

10. The main negative impact expected from the development in this area is the loss of 1749 acres of agricultural land. The other negative impacts are loss of biodiversity, habitat loss and fragmentation. The indirect impact include loss of livelihood to the peoples belongs to the agriculture activities.

11. As the prime purpose of the amendments in master plan is not systemize the unplanned rapid growth, so implementation of this plan at proposed sites will improve the socio-cultural environment. Planned development will ensure the cost effective provision of public utilities from government. It will improve the esthetic beauty of the area and make certain the sustainable development of area.
Conclusion:

As already mentioned that the above the proposed site is being used for the industrial and residential purpose without any planning or following any development plan as per the local government rules. Therefore, the existing industrial and residential areas lacks proper provision of the basic infrastructure and facilities. Most of the area lacks proper sewerage system and drains. Hence the area is exploiting the resources and creating pollution and unhygienic conditions for the residents as well as the workers working in the illegally setup industries.

If the proposed amendment area remains as such then the unplanned urban growth related with increase in population will result in miserable situation with high negative impact on environment and social settings of the area. However, few impacts will be generated due to development of the area which mainly includes land acquisition, loss of 1749 acres agriculture land, generation of 12.8 cusecs of wastewater and 117 tons/day of solid waste from residential area and generation of 24 cusecs of wastewater and 22 tons/day of solid waste from industrial area up till 2035. The greenhouse gasses estimated CO2 equivalent emissions from industrial area will be 1.95 million tones up till 2035 for which the mitigation for these impacts have been proposed in the next section. After the Environmental Analysis of site, it can be concluded that the proposed site is feasible for future development. Further, the implementation of the environmental mitigation measures, proper monitoring and compliance of the environmental standards/legislations will make the Project environmentally more sustainable.
PA-K-13(Allah Abad)

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed Population (2035)</td>
<td>89822</td>
</tr>
<tr>
<td>Total Area of Site</td>
<td>1603 Acres</td>
</tr>
<tr>
<td>Proposed Residential Area</td>
<td>1034 Acres</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Required Infrastructure/ Utilities</th>
<th>Estimated Per Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>(in 2035)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Residential</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimated Number of Houses</td>
<td>5713</td>
</tr>
<tr>
<td>Electricity (based on 30% demand factor)</td>
<td>8.5 MW</td>
</tr>
<tr>
<td>Natural Gas (based on 219 cubic meter/c/y)</td>
<td>19671018 cubic m/day</td>
</tr>
<tr>
<td>Water (based on 300LPCD)</td>
<td>11.01 Cusecs</td>
</tr>
<tr>
<td>Wastewater Production</td>
<td>8.08 Cusecs</td>
</tr>
</tbody>
</table>
Environmental Impacts due to proposed amendment K-13 (Allah Abad) Site:

1. The vehicular traffic from residential area will generate CO, NOx, PM and CO2 emissions which may have variety of health impacts to the commuters and persons living in residencies.

2. The growth rate of population, progressive migration of people from the nearby areas towards the area and the establishment of numerous industries has resulted in increase in water demand (11.01 cusecs for residential area). The continuous extraction of ground water will have impact on ground water aquifer which is already depleting at 2.5-3.0 feet per year.

3. Noise pollution will be generated from vehicles travelling in the residential area with noise level 60 to 70 dBA. Noise pollution may result in hearing related diseases and may cause effects on local biodiversity. Development of area leads towards increase in vehicles on roads. Which if not properly managed will result in wastage of time as well as air and noise pollution.

4. Estimated production of waste water from residential units till 2035 will be 8.08 cusecs. The residential waste water has pollution load (COD-500, BOD-250 and TSS-300) which may deteriorate the surface water – river Ravi water quality.

5. Considering population of area in 2035, the total municipal solid waste will be generated 76 tons/day.

6. Municipal solid waste produced from area if not managed properly, will cause aesthetic problems and also produce odor along with the spread of many diseases. Similarly, medical waste produced from medical facilities etc. if not properly managed and disposed, it can result in injury by contaminated sharp material and infection with Hepatitis B, C, and HIV etc.

7. The LDA will require land acquisition for widening and improvement of the existing roads, development of bypass roads for various existing town/villages etc., development of inter town and villages roads, development of new main...
roads, connecting roads, accessibility roads, sewerage systems including pumping stations, disposal stations, treatment plants, development of recreational areas, public utilities, buildings, administration buildings, toll stations and weighing stations.

8. The main negative impact expected from the development in this area is the loss of 1034 acres of agricultural land. The other negative impacts are loss of biodiversity, habitat loss and fragmentation. The indirect impact include loss of livelihood to the peoples belongs to the agriculture activities.

9. As the prime propose of the amendments in master plan is not systemize the unplanned rapid growth, so implementation of this plan at Proposed sites will improve the socio-cultural environment. Planned development will ensure the cost effective provision of public utilities from government. It will improve the esthetic beauty of the area and make certain the sustainable development of area.

Conclusion:

Again this area is being developed without any proper planning therefore, no infrastructure, standard, basic amenities etc. are available.

If the proposed amendment area remains as such then the unplanned urban growth related with increase in population will result in miserable situation with high negative impact on environment and social settings of the area. However, few impacts will be generated due to development of the area which mainly includes land acquisition, loss of 1034 acres agriculture land, generation of 8.08 cusecs of wastewater from residential area and 76 tons/day of solid waste up till 2035 for which the mitigation for these impacts have been proposed in the next section. After the Environmental Analysis of site, it can be concluded that the proposed site is feasible for future development. Further, the implementation of the environmental mitigation measures, proper monitoring and compliance of the environmental standards/legislations will make the Project environmentally more sustainable.
Chapter 6: SCREENING OF POTENTIAL ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

PA-K-14(Kanaganpur)

Proposed Population (2035) 48540
Total Area of Site 815 Acres
Area Proposed Residential 510 Acres

<table>
<thead>
<tr>
<th>Required Infrastructure/ Utilities (in 2035)</th>
<th>Estimated Per Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td></td>
</tr>
<tr>
<td>Estimated Number of Houses</td>
<td>2800</td>
</tr>
<tr>
<td>Electricity (based on 30% demand factor)</td>
<td>4.2 MW</td>
</tr>
<tr>
<td>Natural Gas (based on 219 cubic meter/c/y)</td>
<td>29124 cubic m/day</td>
</tr>
<tr>
<td>Water (based on 300LPCD)</td>
<td>5.95 Cusecs</td>
</tr>
</tbody>
</table>
Environmental Impacts due to proposed amendment K-14(Kanaganpur) Site:

1. The vehicular traffic from residential area will generate CO, NOx, PM and CO2 emissions which may have variety of health impacts to the commuters and persons living in residencies.

2. Estimated production of waste water from residential units till 2035 will be 4.76 cusecs. The residential waste water has pollution load (COD-500, BOD-250 and TSS-300) which may deteriorate the surface water – river Ravi water quality.

3. Considering population of area in 2035, the total municipal solid waste will be generated 41 tons/day.

4. Municipal solid waste produced from area if not managed properly, will cause aesthetic problems and also produce odor along with the spread of many diseases. Similarly, medical waste produced from medical facilities etc. if not properly managed and disposed, it can result in injury by cutting sharp material and infection with Hepatitis B, C, and HIV etc.

5. The growth rate of population, progressive migration of people from the nearby areas towards the area and the establishment of numerous industries has resulted in increase in water demand (5.95 cusecs for residential area). The continuous extraction of ground water will have negative impact on ground water aquifer which is already depleting at 2.5-3.0 feet per year.

6. Noise pollution will be generated from vehicles travelling in the residential area with noise level 60 to 70 dBA. Noise pollution may results in hearing related diseases and may causes effects on local biodiversity. Development of area leads towards increase in vehicles on roads. Which if not properly managed will result in wastage of time as well as air and noise pollution.

7. The LDA will require land acquisition for widening and improvement of the existing roads, development of bypass roads for various existing town/villages etc, development of inter town and villages roads, development of new main
roads, connecting roads, accessibility roads, sewerage systems including pumping stations, disposal stations, treatment plants, development of recreational areas, public utilities, buildings, administration buildings, toll stations and weighing stations.

8. The main negative impact expected from the development in this area is the loss of 510 acres of agricultural land. The other negative impacts are loss of biodiversity, habitat loss and fragmentation. The indirect impact include loss of livelihood to the peoples belongs to the agriculture activities.

9. As the prime propose of the amendments in master plan is not systemize the unplanned rapid growth, so implementation of this plan at Proposed sites will improve the socio-cultural environment. Planned development will ensure the cost effective provision of public utilities from government. It will improve the esthetic beauty of the area and make certain the sustainable development of area.

Conclusion:

Based on the existing conditions the locals are living in the unplanned areas without proper provision of basic amenities such as clear water, proper sewerage system, road or streets, low voltage etc.

If the proposed amendment area remains as such then the unplanned urban growth related with increase in population will result in miserable situation with high negative impact on environment and social settings of the area. However, few impacts will be generated due to development of the area which mainly includes land acquisition, loss of 510 acres agriculture land, generation of 4.76 cusecs of wastewater from residential area and 41 tons/day of solid waste up till 2035 for which the mitigation for these impacts have been proposed in the next section. After the Environmental Analysis of site, it can be concluded that the proposed site is feasible for future development. Further, the implementation of the environmental mitigation measures, proper monitoring and compliance of the environmental standards/legislations will make the Project environmentally more sustainable.
Chapter 6: SCREENING OF POTENTIAL ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

PA-K-15 (Pattoki)

Proposed Population (2035) 183761
Total Area of Site 4281 Acres
Proposed Residential Area 2118 Acres
Proposed Industries 275 Acres

<table>
<thead>
<tr>
<th>Required Infrastructure/ Utilities (in 2035)</th>
<th>Estimated Per Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td></td>
</tr>
<tr>
<td>Estimated Number of Houses</td>
<td>12051</td>
</tr>
<tr>
<td>Electricity (based on 30% demand factor)</td>
<td>18 MW</td>
</tr>
<tr>
<td>Natural Gas (based on 219 cubic meter/c/y)</td>
<td>110268 cubic m/day</td>
</tr>
<tr>
<td>Water (based on 300LPCD)</td>
<td>2.2 Cusecs</td>
</tr>
<tr>
<td>Wastewater Production</td>
<td>1.76 Cusecs</td>
</tr>
<tr>
<td>Solid Waste Production (0.85kg/c/d)</td>
<td>156 Tons/day</td>
</tr>
</tbody>
</table>
Industrial

Estimated Number of Medium Industrial Units 11

<table>
<thead>
<tr>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity (100% demand factor)</td>
<td>5.5 MW</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>22000 cubic m/day</td>
</tr>
<tr>
<td>Water</td>
<td>2.69 Cusecs/day</td>
</tr>
<tr>
<td>Wastewater Production</td>
<td>2.08 Cusecs/day</td>
</tr>
<tr>
<td>Solid Waste Production (0.85kg*1000/c/d)</td>
<td>18 Tons/day</td>
</tr>
</tbody>
</table>

Environmental Impacts due to proposed amendment K-15 (Pattoki)Site:

1. The operation of industry generates CO, NOx, Sox and PM which may deteriorate the ambient air quality of the area. The greenhouse gasses estimated CO2 equivalent emissions from this industry area will be 1.65 million tones up till 2035.

2. The Vehicular traffic from residential and industrial area will generate CO, NOx, PM and CO2 emissions which may have variety of health impacts to the commuters and persons living in residencies.

3. Overlap of industries with residential area will have impact on people residing nearby area and will cause various health problems which include lung diseases, hear loss, diarrhea, intestinal problems etc.

4. The growth rate of population, progressive migration of people from the nearby areas towards the area and the establishment of numerous industries has resulted in increase in water demand (2.2 cusecs for residential and 2.69 cusecs for industrial). The continuous extraction of ground water will have negative impact on ground water aquifer which is already depleting at 2.5-3.0 feet per year.

5. Considering population of area in 2035, the total municipal solid waste will be generated 156 tons/day.

6. Municipal solid waste produced from area if not managed properly, will cause aesthetic problems and also produce odor along with the spread of many diseases. Similarly, medical waste produced from medical facilities etc. if not properly managed and disposed, it can result in injury by contaminated sharp
material and infection with Hepatitis B, C, and HIV etc. From industries estimated solid waste production is 18 tons/day. This can cause severe public as well as environmental health issues if not properly disposed.

7. Noise pollution will be generated from vehicles travelling and from industrial zones. The average noise level generated from industrial units is 70 to 80 dBA. Noise pollution may results in hearing related diseases and may causes effects on local biodiversity. Development of area leads towards increase in vehicles on roads. Which if not properly managed will result in wastage of time as well as air and noise pollution.

8. Estimated production of waste water from residential units till 2035 will be 1.76 cusecs and from industrial units are 2.08 cusecs. The residential waste water has pollution load (COD-500, BOD-250 and TSS-300) which may deteriorate the surface water – river Ravi water quality. The industrial waste water has pollution load (COD-2500, BOD-1000 and TSS-900) which may deteriorate the surface water – river Ravi water quality.

9. The LDA will require land acquisition for widening and improvement of the existing roads, development of bypass roads for various existing town/villages etc, development of inter town and villages roads, development of new main roads, connecting roads, accessibility roads, sewerage systems including pumping stations, disposal stations, treatment plants, development of recreational areas, public utilities, buildings, administration buildings, toll stations and weighing stations.

10. The main negative impact expected from the development in this area is the loss of 2300 acres of agricultural land. The other negative impacts are loss of biodiversity, habitat loss and fragmentation. The indirect impact include loss of livelihood to the peoples belongs to the agriculture activities.

11. As the prime purpose of the amendments in master plan is not systemize the unplanned rapid growth, so implementation of this plan at Proposed sites will improve the socio-cultural environment. Planned development will ensure the cost effective provision of public utilities from government. It will improve the
esthetic beauty of the area and make certain the sustainable development of area.

Conclusion:

As already mentioned that the above the proposed site is being used for the industrial and residential purpose without any planning or following any development plan as per the local government rules. Therefore, the existing industrial and residential areas lacks proper provision of the basic infrastructure and facilities. Most of the area lacks proper sewerage system and drains. Hence the area is exploiting the resources and creating pollution and unhygienic conditions for the residents as well as the workers working in the illegally setup industries.

If the proposed amendment area remains as such then the unplanned urban growth related with increase in population will result in miserable situation with high negative impact on environment and social settings of the area. However, few impacts will be generated due to development of the area which mainly includes land acquisition, loss of 2300 acres agriculture land, generation of 1.76 cusecs of wastewater and 156 tons/day of solid waste from residential area and generation of 2.08 cusecs of wastewater and 18 tons/day of solid waste from industrial area up till 2035. The greenhouse gasses estimated CO2 equivalent emissions from industrial area will be 1.65 million tones up till 2035 for which the mitigation for these impacts have been proposed in the next section. After the Environmental Analysis of site, it can be concluded that the proposed site is feasible for future development. Further, the implementation of the environmental mitigation measures, proper monitoring and compliance of the environmental standards/legislations will make the Project environmentally more sustainable.
Amendment in Master Plan for Lahore Division (The Project)

Environment Impact Assessment (EIA) Report

Chapter 6: SCREENING OF POTENTIAL ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

PA-K-16 (Talwandi)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed Population (2035)</td>
<td>34579</td>
</tr>
<tr>
<td>Total Area of Site</td>
<td>669 Acres</td>
</tr>
<tr>
<td>Residential Area</td>
<td>523 Acres</td>
</tr>
</tbody>
</table>

Required Infrastructure/ Utilities (in 2035)

<table>
<thead>
<tr>
<th>Service</th>
<th>Estimated Per Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential Estimated Number of Houses</td>
<td>2063</td>
</tr>
<tr>
<td>Electricity (based on 30% demand factor)</td>
<td>3.0 MW</td>
</tr>
<tr>
<td>Natural Gas (based on 219 cubic meter/c/y)</td>
<td>20747 cubic m/day</td>
</tr>
<tr>
<td>Water (based on 300LPCD)</td>
<td>4.24 Cusecs</td>
</tr>
<tr>
<td>Wastewater Production</td>
<td>3.41 Cusecs</td>
</tr>
<tr>
<td>Solid Waste Production (0.85kg/c/d)</td>
<td>29 Tons/day</td>
</tr>
</tbody>
</table>
Environmental Impacts due to proposed amendment K-16 (Talwandi) Site:

1. The vehicular traffic from residential area will generate CO, NOx, PM and CO2 emissions which may have variety of health impacts to the commuters and persons living in residencies.

2. Estimated production of waste water from residential units till 2035 will be 3.41 cusecs. The residential waste water has pollution load (COD-500, BOD-250 and TSS-300) which may deteriorate the surface water – river Ravi water quality.

3. Considering population of area in 2035, the total municipal solid waste will be generated 29 tons/day.

4. Municipal solid waste produced from area if not managed properly, will cause aesthetic problems and also produce odor along with the spread of many diseases. Similarly, medical waste produced from medical facilities etc. if not properly managed and disposed, it can result in injury by cutting sharp material and infection with Hepatitis B, C, and HIV etc.

5. Noise pollution will be generated from vehicles travelling in the residential area with noise level 60 to 70 dBA. Noise pollution may results in hearing related diseases and may causes effects on local biodiversity. Development of area leads towards increase in vehicles on roads. Which if not properly managed will result in wastage of time as well as air and noise pollution.

6. The growth rate of population, progressive migration of people from the nearby areas towards the area and the establishment of numerous industries has resulted in increase in water demand (4.24 cusecs for residential area. The continuous extraction of ground water will have impact on ground water aquifer which is already depleting at 2.5-3.0 feet per year.

7. The LDA will require land acquisition for widening and improvement of the existing roads, development of bypass roads for various existing town/villages etc, development of inter town and villages roads, development of new main roads, connecting roads, accessibility roads, sewerage systems including pumping stations, disposal stations, treatment plants, development of
Chapter 6: SCREENING OF POTENTIAL ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

recreational areas, public utilities, buildings, administration buildings, toll stations and weighing stations.

8. The main negative impact expected from the development in this area is the loss of 523 acres of agricultural land. The other negative impacts are loss of biodiversity, habitat loss and fragmentation. The indirect impact include loss of livelihood to the peoples belongs to the agriculture activities.

9. As the prime purpose of the amendments in master plan is not systemize the unplanned rapid growth, so implementation of this plan at Proposed sites will improve the socio-cultural environment. Planned development will ensure the cost effective provision of public utilities from government. It will improve the esthetic beauty of the area and make certain the sustainable development of area.

Conclusion:

The existing land use represent an unplanned haphazard residential growth which lacks provision of basic infrastructure and amenities without any legal cover or following any local approved plan

If the proposed amendment area remains as such then the unplanned urban growth related with increase in population will result in miserable situation with high negative impact on environment and social settings of the area. However, few impacts will be generated due to development of the area which mainly includes land acquisition, loss of 523 acres agriculture land, generation of 3.41 cusecs of wastewater from residential area and 29 tons/day of solid waste up till 2035 for which the mitigation for these impacts have been proposed in the next section. After the Environmental Analysis of site, it can be concluded that the proposed site is feasible for future development. Further, the implementation of the environmental mitigation measures, proper monitoring and compliance of the environmental standards/legislations will make the Project environmentally more sustainable.
6.5.4 DISTRICT SHEIKHUPURA

PA-SKP-1 (Sheikhupura City)

The proposed site PA-SKP-1 based on the existing trend and existing setup has been selected for the residential and industrial areas. Accordingly, an improvement
in the road network has also been proposed considering the future load of the traffic due to the industrial, commercial and residential activities. Following are the existing and proposed setup of this site:

Estimated Population (2035) 12,43,902
Total Area of Site 32016 Acres
Residential Proposed 13725 Acres
Industrial Proposed 4643 Acres

<table>
<thead>
<tr>
<th>Required Infrastructure/ Utilities (by 2035)</th>
<th>Estimated Per Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td></td>
</tr>
<tr>
<td>Estimated Number of Houses</td>
<td>94257</td>
</tr>
<tr>
<td>Electricity (based on 30% demand factor)</td>
<td>141 MW</td>
</tr>
<tr>
<td>Natural Gas (based on 219 cubic meter/c/y)</td>
<td>7,46,341 cubic m/day</td>
</tr>
<tr>
<td>Water (based on 300 LPCD)</td>
<td>150 Cusecs</td>
</tr>
<tr>
<td>Wastewater Production</td>
<td>120 Cusecs</td>
</tr>
<tr>
<td>Solid Waste Production (0.85kg/c/d)</td>
<td>1,057 Tons/day</td>
</tr>
<tr>
<td>Industrial</td>
<td></td>
</tr>
<tr>
<td>Estimated Number of small industrial units</td>
<td>739</td>
</tr>
<tr>
<td>Estimated Number of medium industrial units</td>
<td>153</td>
</tr>
<tr>
<td>Electricity (100% demand factor)</td>
<td>94 MW</td>
</tr>
<tr>
<td>Natural Gas (150 cubic meter)</td>
<td>435,5000 cubic m/day</td>
</tr>
<tr>
<td>Water</td>
<td>828 Cusecs</td>
</tr>
<tr>
<td>Wastewater Production</td>
<td>660 Cusecs</td>
</tr>
<tr>
<td>Solid Waste Production (0.85kg*1000/c/d)</td>
<td>400 Tons/day</td>
</tr>
</tbody>
</table>

6.5.1.1 Environmental Impacts Due to Proposed Amendments in PA-SKP-1 (Sheikhupura City):

Following are the potential environmental impacts and social impacts of the proposed site on the environment:
One of the major impacts associated with the proposed landuse of the site is the generation of the wastewater of domestic nature from the proposed residential area and industrial wastewater from the proposed industrial areas.

Estimated quantities of the wastewater from proposed residential areas based on the consumption of 300 LPCPD up to the year 2035 will be 120 Cusecs and from industrial units estimated wastewater discharge will be about 660 Cusecs.

The wastewater from the residential areas will of domestic nature with a pollution load of about (COD-500, BOD-250 and TSS-300). If this wastewater is disposed in the nearby surface water drains it will pollute the surface water quality. Similarly, the industrial wastewater will have a pollution load pf (COD-1500, BOD-800 and TSS-600) which will further pollute the surface water quality if disposed untreated.

Similarly, one of the major factors behind the amendment in the Master Plan of Lahore is to find the solution for the pollution loads being generated in the congested areas of the Lahore division. Another potential significant impact will be the generation of solid waste from this site. Considering the anticipated population of proposed site for the year 2035, the total estimated municipal solid waste will be about 1057 tons/day while industrial waste estimates are about 400 tons/day.

This waste will include putricible organic waste, inorganic waste, hazardous waste etc. based on the residential and industrial areas characteristics. Improper management of the solid waste will cause aesthetic problems and also produce odor along with the spread of many diseases. Organic waste needs to be dealt quickly as it is biologically degradable. Similarly, for inorganic waste resource, recovery and recycle opportunities can be found. Hazardous waste including medical waste produced from industries and hospitals etc. if not properly managed and disposed, it can result in injury by contaminated sharp material and infection with Hepatitis B, C, and HIV etc. From industries estimated solid waste production is 400 tons/day. This can cause severe public as well as environmental health issues if not properly disposed.

Generation of the air pollution from the proposed industrial zone is one of the potential impact on the environment due to the proposed site. The operation of industry generates CO, NOx, SOx and PM which may affect the ambient
air quality of the area. The greenhouse gasses estimated CO2 equivalent emissions from this industry area will be about 33.89 million tones uptill 2035.

Similarly, with the establishment of the industrial and residential areas there will considerable increase in the vehicular traffic. This increase in vehicular traffic will also generate emissions. The Vehicular traffic from residential and industrial area will generate CO, NOx, PM and CO2 emissions which may have variety of health impacts to the commuters, persons living in the residencies and workers working in the industries.

- One of the basic necessity of any residential and industrial area is the demand for the potable water. With the setup of the residential colonies/societies and industrial areas the population the area will increase many fold. The estimated population has been calculated above.

With the setup of housing societies and the job opportunities in the industrial areas, migration of the locals from nearby areas is also anticipated.

The growth rate of population, progressive migration of people from the nearby areas towards the area and the establishment of numerous industries will result in an increase in water demand. Based on the estimation about 150 Cusecs for residential and 828 Cusecs for industrial will be required. The continuous extraction of ground water will have negative impact on ground water aquifer which is already depleting at 2.5-3.0 feet per year.

- Increase in the background noise levels due to the anthropogenic activities in the industrial as well as residential commercial areas are also anticipated. Noise pollution will be generated from commercial zones in the residential areas, increase in traffic load and due to the industrial zones. The average noise level generated from industrial units is 70 to 80 dBA. Noise pollution may result in hearing related diseases and may causes effects on local biodiversity such as birds, reptiles and other animals. Development of area leads towards increase in vehicles on roads. Which if not properly managed will result in wastage of time as well as air and noise pollution.

- Acquisition of the land for the various infrastructure development is one the major impact on the areas. LDA will require land acquisition for widening and
improvement of the existing roads, development of bypass roads for various existing towns/villages etc. development of inter town and villages roads, development of new main roads, connecting roads, accessibility roads, sewerage systems including pumping stations, disposal stations, treatment plants, development of recreational areas, public utilities, buildings, administration buildings, toll stations and weighing stations.

- The potential adverse impact anticipated due to the development in this area is the loss of 25,000 acres of agricultural land. The other negative impacts are loss of biodiversity, habitat loss and fragmentation due to this loss of prime agriculture land. The indirect impact due to the loss of this agriculture land includes the loss of livelihood to the population associated with the agriculture activities.

- As the prime purpose of the amendments in master plan is to streamline the future population growth and development with respect to the local laws and policies, avoid stress on the local resource like groundwater, avoid pollution loads and systemize the unplanned growth. Therefore, with the implementation of this amendment in the master plan, the anticipated growth and development of the industrial, commercial and residential areas will in accordance with the LDA rules with the provision and management of above mentioned impact which will result in improvement in the socio-cultural environment. Planned development will ensure the cost effective provision of public utilities from government. It will improve the esthetic beauty of the area and make certain the sustainable development of area.

6.5.1.2 Conclusion:
If the areas selected for the residential and industrial development are not notified in the amendment plan, the existing unplanned residential areas and illegal industries will keep on increasing in number without the provision of the basic infrastructure such as water supply, sewerage system, wastewater treatment facilities, improved roads and proper emissions control to avoid the air and noise pollution. This will result in greater socio-economic, socio-political issues, pollution and contamination of the resources.
Chapter 6: SCREENING OF POTENTIAL ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

With the implementation of the proposed site fewer impacts will be generated due to development of the area which are mostly related to the land acquisition, loss of 25,000 acres of agriculture land, generation of 120 cusecs of wastewater and 1057 tons/day of solid waste from residential area, generation of 660 cusecs of wastewater and 400 tons/day of solid waste from industrial area uptill 2035. The greenhouse gasses estimated CO2 equivalent emissions from industrial area will be 33.89 million tones uptill 2035. Proper mitigation and management measures will be taken by the concerned authorities to minimize these impacts.

After the implementation of the mitigation measures such as the compliance of NEQS for the disposal of wastewater through treatment, air and noise emissions, vehicular emissions, provision of compensation for the losses and acquisition of land as per existing market rates, design of infrastructure facilities such as sewerage system, water supply system, solid waste management system by each zone and society, it can be concluded that the proposed site is feasible for future development. Further, the implementation of the environmental mitigation measures, proper monitoring and compliance of the environmental standards/legislations will make the Project environmentally more sustainable.

PA-SKP-2 (Muridke)
Chapter 6: SCREENING OF POTENTIAL ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

Proposed Land uses of SITE- SKP-2 (Muridke)

Based on the existing trend of the district of the Shekhupura the proposed site has been designed to be used for the development of residential and industrial areas.
Following are the details of the existing land use and proposed estimated development along with the proposed facilities etc.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed Population (2035)</td>
<td>486,391</td>
</tr>
<tr>
<td>Total Area of Site</td>
<td>16957 Acres</td>
</tr>
<tr>
<td>Proposed Residential Area</td>
<td>4096 Acres</td>
</tr>
<tr>
<td>Proposed Industrial Area</td>
<td>3600 Acres</td>
</tr>
<tr>
<td>Required Infrastructure/ Utilities (by 2035)</td>
<td>Estimated Per Day</td>
</tr>
</tbody>
</table>

Residential

Estimated Number of Housing Units	36511
Electricity (based on 30% demand factor)	54 MW
Natural Gas (based on 219 cubic meter/c/y)	291834 cubic m/day
Water (based on 300LPCD)	6 Cusecs
Wastewater Production	4.8 Cusecs
Solid Waste Production (0.85kg/c/d)	413 Tons/day

Industrial

Estimated Number of Medium industrial Units	65
Estimated Number of Small Industrial Units	320
Estimated Number of Heavy Industrial Units	20
Electricity (100% demand factor)	140 MW
Environmental Impacts Due to Proposed Amendments in PA-SKP-2 (Muridke):

Based on the proposed land use and anticipated activities following are the potential impacts of the PA-SKP-2 site on the environment with reference to the existing conditions:

- Potential risk of flooding of this site due to Nikki Deg Drain. The flood is the serious threat that can cause damage to property, livestock, infrastructure and more important life loss.

- Air emission is one of the potentially significant environmental impact due to the setup of the industrial zone in the proposed site. The operation of industry generates CO, NOx, Sox and PM which may deteriorate the ambient air quality of the area.

The estimation of the greenhouse gases based on CO2 equivalent emissions from the proposed industrial area is 33.55 million tones up till the year 2035.

With the setup of the industrial and residential areas the traffic volume on the proposed road network will also increase. The vehicular traffic from residential and industrial area will generate CO, NOx, PM and CO2 emissions which may have variety of health impacts to the commuters and persons living in residencies.

- With the setup of the industrial activity, commercial activity in the residential areas, provision of basic infrastructure in the areas will propagate the migration of locals from other areas towards this area. The growth rate of population, progressive migration of people from the nearby areas towards the area and the establishment of numerous industries will result in the increase in water demand. It has been estimated that about 6 cusecs of water
demand for residential and 427 cusecs for industrial will be required. If such quantities of the water are solely relied on the ground water. The continuous extraction of ground water will have adverse impact on ground water aquifer which is already depleting.

- Similarly, with the consumption of the water for domestic and industrial use, wastewater will be generated. Both domestic wastewater in the form of sewage and industrial wastewater will be generated from residential and industrial areas.

Estimated production of wastewater from residential units till 2035 will be 4.8 cusecs and from industrial units are 340 cusecs. The domestic sewage from residential areas will have a pollution load of COD-500, BOD-250 and TSS-300. This sewage if disposed without any treatment to the nearby water bodies will pollute the surface water quality which will ultimately have an adverse impact on the River Ravi water quality. Similarly, the characteristics of the industrial wastewater have pollution load of COD-2500, BOD-1000 and TSS-900 which will adversely impact the surface water if disposed without any treatment.

- Generation of the solid waste of various types such as organic waste and inorganic waste from the residential areas including construction waste, generation of hazardous waste is potentially a significant issues of the proposed PA-SKP-2 site. The total estimated population of the proposed site is about 2035 and the total municipal solid waste to be generated is about 413 tons/day. This solid water will consist of putricible waste (organic waste), inorganic waste, construction waste, other recycle able waste and hazardous hospital waste.

Municipal solid waste produced from area if not managed properly, will not only cause the aesthetic problems but will also produce odor along with the spread of many diseases. Similarly, medical waste produced from medical facilities etc. if not properly managed and disposed, it can result in injury by contaminated sharp cutting material and infection with Hepatitis B, C, and HIV etc.

Similarly, the solid water produced from the industries will be highly hazardous in nature along with small components of organic and inorganic waste. The estimated
quantity of solid waste production from the industrial zone is about 330 tons/day. The hazardous and non-hazardous components of this waste needs to be collected and disposed separately. The improper management of solid waste can cause severe public as well as environmental health issues if not properly disposed.

- Due to the anthropogenic activities in the industrial areas, commercial areas in the residential areas, movement of the vehicles noise pollution will be generated. The estimated average noise level generated from industrial units is about 70 to 80 dBA. Noise pollution may result in hearing related diseases and may causes effects on local biodiversity. Development of area leads towards increase in vehicles on roads. Which if not properly managed will result in wastage of time as well as air and noise pollution.

- For the development of the basic infrastructure facilities for the proposed residential and industrial zones, land acquisition will be required by the LDA. The LDA will require land acquisition for widening and improvement of the existing roads, development of bypass roads for various existing town/villages etc, development of inter town and villages roads, development of new main roads, connecting roads, accessibility roads, sewerage systems including pumping stations, disposal stations, treatment plants, development of recreational areas, public utilities, buildings, administration buildings, toll stations and weighing stations. This will be a major activity which will have an impact on the existing landuse of the area.

- The major potential adverse impact expected from the development in this area is the loss of 7696 acres of prime agricultural land. This loss of agriculture land will result in the loss of biodiversity, habitat loss and fragmentation. The loss of agriculture will result in the loss of livelihood of the locals who are associated with the agriculture sector.

- As the main objective of the amendment in the master plan is to streamline the development and residential requirement in the areas as per the rules and regulations of the LDA and other local government authorities and control the over exploitation of the resources, mitigate the impact of urban sprawl, control and mitigate the pollution and contamination and systemize the existing
unplanned growth in the proposed sites. Therefore, with the implementation of this amendment at purposed sites will improve the socio-cultural environment. Planned development will ensure the cost effective provision of public utilities from government. It will improve the esthetic beauty of the area and make certain the sustainable development of area.

Conclusion:

If the areas selected for the residential and industrial development are not notified in the amendment plan, the existing unplanned residential areas and illegal industries will keep on increasing in number without the provision of the basic infrastructure such as water supply, sewerage system, wastewater treatment facilities, improved roads and proper emissions control to avoid the air and noise pollution. This will result in greater socio-economic, socio-political issues, pollution and contamination of the resources.

The unplanned urban growth related with increase in population will result in miserable situation with potentially significant environmental and social impacts on environment and social settings of the area.

However, due to the planned development anticipated few impacts will be generated due to development of the area which mainly includes land acquisition, loss of 7696 acres agriculture land, generation of 4.8 cusecs of wastewater and 413 tons/day of solid waste from residential area, generation of 340 cusecs of wastewater and 330 tons/day of solid waste from industrial area uptill 2035. The greenhouse gasses estimated CO2 equivalent emissions from industrial area will be 33.55 million tones uptill 2035.

With the notification of amendment of this site, all the provision of the applicable laws such as NEQS for control emission and noise, NEQS for the treatment and disposal of wastewater, provision of treatment plants for the industrial areas, use of recycle, reuse, resource recovery, separate handling of hazardsous waste, use of traffic rules, strict compliance of vehicle fitness certificates will be ensures.

The site is also prone to the flood hazard in accordance with hydrological study attached as Appendix- III. The mitigations for flood should have been followed in order to develop the site.
After the Environmental Analysis of site, it can be concluded that the proposed site is feasible for future development if only mitigations for flood hazard have been followed. Further, the implementation of the environmental mitigation measures, proper monitoring and compliance of the environmental standards/legislations will make the Project environmentally more sustainable.

PA-SKP-3 (Ferozewala)
Proposed Intra City Roads for SITE- S SKP-3 (Ferozewala)

Based on the current landuse and trends the proposed sites has been designated for the residential and industrial areas with the basic infrastructure provisions keeping in view the future demands of this site upto the year 2035 as detailed below:

-

Proposed Population (2035)
15000

Total Area of Site
10696 Acres

Area Proposed Residential
300 Acres

Area Proposed Industrial
9543 Acres

Required Infrastructure/ Utilities (by 2035)

<table>
<thead>
<tr>
<th>Infrastructure/ Utilities</th>
<th>Estimated Per Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td></td>
</tr>
<tr>
<td>Estimated Number of Housing Units</td>
<td>2142</td>
</tr>
<tr>
<td>Electricity (based on 30% demand factor)</td>
<td>3.2 MW</td>
</tr>
<tr>
<td>Natural Gas (based on 219 cubic)</td>
<td>3285000 cubic m/year</td>
</tr>
</tbody>
</table>
Amendment in Master Plan for Lahore Division (The Project)
Environmental Impact Assessment (EIA) Report
Chapter 6: SCREENING OF POTENTIAL ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water (based on 300LPDC)</td>
<td>1.83 Cusecs</td>
</tr>
<tr>
<td>Wastewater Production</td>
<td>1.46 Cusecs</td>
</tr>
<tr>
<td>Solid Waste Production (0.85kg/c/d)</td>
<td>12.75 Tons/day</td>
</tr>
</tbody>
</table>

Industrial

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimated Number of Medium industrial Units</td>
<td>127</td>
</tr>
<tr>
<td>Estimated Number of Small Industrial Units</td>
<td>636</td>
</tr>
<tr>
<td>Estimated Number of Heavy Industrial Units</td>
<td>38</td>
</tr>
<tr>
<td>Electricity (100% demand factor)</td>
<td>270 MW</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>8000000 cubic m/day</td>
</tr>
<tr>
<td>Water</td>
<td>856 Cusecs</td>
</tr>
<tr>
<td>Wastewater Production</td>
<td>684 Cusecs</td>
</tr>
<tr>
<td>Solid Waste Production (0.85kg*1000/c/d)</td>
<td>270 Tons/day</td>
</tr>
</tbody>
</table>

Environmental Impacts Due To Proposed Amendments in PA-SKP-3 (Ferozewala):

- Potential risk of flooding of this site due to Deg Nallah. The flood is the serious threat that can cause damage to property, livestock, infrastructure and more important life loss.

- With the setup of the industrial and residential area generation of the solid waste is an anticipated major issue. Considering population of area by 2035, the total municipal solid waste will be generated 12.5 tons/day. Municipal solid waste produced from area if not managed properly, will cause aesthetic problems and also produce odor along with the spread of many diseases. Similarly, medical waste produced from medical facilities etc. if not properly managed and disposed, it can result in injury by contaminated sharp cutting material and infection with Hepatitis B, C, and HIV etc. From industries estimated solid waste production is 270 tons/day. This can cause severe public as well as environmental health issues if not properly disposed.

- The operation of industry generates CO, NOx, Sox and PM which may deteriorate the ambient air quality of the area. The green house gasses estimated CO2 equivalent emissions from this industry area will be 65 million tones uptill 2035. The Vehicular traffic from residential and industrial area will
generate CO, NOx, PM and CO2 emissions which may have variety of health impacts to the commuters and persons living in residencies

- The growth rate of population, progressive migration of people from the nearby areas towards the area and the establishment of numerous industries has resulted in increase in water demand (1.86 cusecs for residential and 856 cusecs for industrial).

- The continuous extraction of ground water will have negative impact on ground water aquifer which is already depleting at 2.5-3.0 feet per year. Estimated production of waste water from residential units till 2035 will be 1.45 cusecs and from industrial units are 684 cusecs. The residential waste water have pollution load (COD-500, BOD-250 and TSS-300) which may deteriorate the surface water – River Ravi water quality. The industrial waste water have pollution load (COD-2500, BOD-1000 and TSS-900) which may deteriorate the surface water – River Ravi water quality.

- Noise pollution will be generated from vehicles travelling and from industrial zones. The average noise level generated from industrial units is 70 to 80 dBA. Noise pollution may results in hearing related diseases and may causes effects on local biodiversity. Development of area leads towards increase in vehicles on roads. Which if not properly managed will result in wastage of time as well as air and noise pollution.

- The LDA will require land acquisition for widening and improvement of the existing roads, development of bypass roads for various existing town/villages etc, development of inter town and villages roads, development of new main roads, connecting roads, accessibility roads, sewerage systems including pumping stations, disposal stations, treatment plants, development of recreational areas, public utilities, buildings, administration buildings, toll stations and weighing stations.

- The main negative impact expected from the development in this area is the loss of 9956 acres of agricultural land. The other negative impacts are loss of biodiversity, habitat loss and fragmentation. The indirect impact include loss of livelihood to the peoples belongs to the agriculture activities.
Chapter 6: SCREENING OF POTENTIAL ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

- As the prime purpose of the amendments in master plan is to systemize the unplanned growth, so implementation of this plan at Proposed sites will improve the socio-cultural environment. Planned development will ensure the cost effective provision of public utilities from government. It will improve the esthetic beauty of the area and make certain the sustainable development of area.

Conclusion:

If the areas selected for the residential and industrial development are not notified in the amendment plan, the existing unplanned residential areas and illegal industries will keep on increasing in number without the provision of the basic infrastructure such as water supply, sewerage system, wastewater treatment facilities, improved roads and proper emissions control to avoid the air and noise pollution. This will result in greater socio-economic, socio-political issues, pollution and contamination of the resources.

The unplanned urban growth related with increase in population will result in miserable situation with potentially significant environmental and social impacts on environment and social settings of the area.

With the notification of this amendment in the Master Plan of Lahore few impacts will be generated due to development of the area which mainly includes land acquisition, loss of 9956 acres agriculture land, generation of 1.45 cusecs of wastewater and 12.5 tons/day of solid waste from residential area, generation of 684 cusecs of wastewater and 270 tons/day of solid waste from industrial area uptill 2035. The green house gasses estimated CO2 equivalent emissions from industrial area will be 65 million tones uptill 2035.

With the notification of amendment of this site, all the provision of the applicable laws such as NEQS for control emission and noise, NEQS for the treatment and disposal of wastewater, provision of treatment plants for the industrial areas, use of recycle, reuse, resource recovery, separate handling of hazardous waste, use of traffic rules, strict compliance of vehicle fitness certificates will be ensured.
The site is also prone to the flood hazard in accordance with hydrological study attached as Appendix- III. The mitigations for flood should have been followed in order to develop the site.

After the Environmental Analysis of site, it can be concluded that the proposed site is feasible for future development if only mitigations for flood hazard have been followed. Further, the implementation of the environmental mitigation measures, proper monitoring and compliance of the environmental standards/legislations will make the Project environmentally more sustainable.

PA-SKP-4 (Farooqabad)
Proposed Intra City Roads for SITE- S SKP-4 (Farooqabad)

Based on the existing landuse and keeping in view the trends in this zone, the proposed site has been designated for the residential zone keeping in view the future anticipated infrastructures and basic necessities such as the provision of potable water, sewerage and road infrastructure as detailed below:

Proposed Population (2035) 183929
Total Area of Site 3231 Acres
Proposed Residential 1470 Acres

<table>
<thead>
<tr>
<th>Required Infrastructure/ Utilities (by 2035)</th>
<th>Estimated Per Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td></td>
</tr>
<tr>
<td>Estimated Number of Housing Units</td>
<td>11567</td>
</tr>
<tr>
<td>Electricity (based on 30% demand factor)</td>
<td>17 MW</td>
</tr>
<tr>
<td>Natural Gas (based on 219 cubic meter/c/y)</td>
<td>110357 cubic m/day</td>
</tr>
<tr>
<td>Water (based on 300LPCD)</td>
<td>22.5 Cusecs</td>
</tr>
</tbody>
</table>
Wastewater Production 18 Cusecs
Solid Waste Production (0.85kg/c/d) 156 Tons/day

Environmental Impacts Due To Proposed Amendments in PA-SKP-4 (Farooqabad)

- The vehicular traffic from residential area will generate CO, NOx, PM and CO2 emissions which may have variety of health impacts to the commuters and persons living in residencies. The growth rate of population, progressive migration of people from the nearby areas towards the area and the establishment of numerous industries has resulted in an increase in water demand (22.5 cusecs for residential area).

- The continuous extraction of ground water will have negative impact on ground water aquifer which is already depleting at 2.5-3.0 feet per year. Estimated production of waste water from residential units till 2035 will be 18 Cusecs. The residential waste water have pollution load (COD-500, BOD-250 and TSS-300) which may deteriorate the surface water – River Ravi water quality.

- Considering population of area by 2035, the total municipal solid waste will be generated 156 tons/day. Municipal solid waste produced from area if not managed properly, will cause aesthetic problems and also produce odor along with the spread of many diseases. Similarly, medical waste produced from medical facilities etc. if not properly managed and disposed, it can result in injury by contaminated sharp material and infection with Hepatitis B, C, and HIV etc.

- Noise pollution will be generated from vehicles travelling in the residential area with noise level 60 to 70 dBA. Noise pollution may results in hearing related diseases and may causes effects on local biodiversity. Development of area leads towards increase in vehicles on roads. Which if not properly managed will result in wastage of time as well as air and noise pollution.

- The main negative impact expected from the development in this area is the loss of 1470 acres of agricultural land. The other negative impacts are loss of
biodiversity, habitat loss and fragmentation. The indirect impact include loss of livelihood to the peoples belongs to the agriculture activities.

- As the prime purpose of the amendments in master plan is to systemize the unplanned growth, so implementation of this plan at Proposed sites will improve the socio-cultural environment. Planned development will ensure the cost effective provision of public utilities from government. It will improve the esthetic beauty of the area and make certain the sustainable development of area.

Conclusion:

The existing conditions in the proposed zone is alarming due to the over exploitation of the resources, unplanned growth, slumps, heaps of solid waste without proper management, without treatment disposal of wastewater, litter and unhygienic conditions, unplanned roads.

If the conditions of the proposed zone remain the same and all these areas are not legally bound under the LDA rules, the conditions will further deteriorate which will not only cause the pollution but effect the local social aspect of the society.

This will further result in the unplanned urban growth related with increase in population will result in miserable situation with high negative impact on environment and social settings of the area.

With the notification of the proposed PA-SKP-4 site for the master plan, few impacts will be generated due to development of the area which mainly includes land acquisition, loss of 1470 acres of agriculture land, generation of 18 cusecs of wastewater from residential area and 156 tons/day of solid waste uptill 2035.

With the proposed provision of basic infrastructure of road network, supply of potable water, proper sewerage system, treatment plants, green belts, provision of solid waste management system the overall situation in this area will improve considerably.

After the Environmental Analysis of site, it can be concluded that the proposed site is feasible for future development. Further, the implementation of the environmental
mitigation measures, proper monitoring and compliance of the environmental standards/legislations will make the Project environmentally more sustainable.

PA-SKP-5 (Narang Mandi)
Proposed Intra City Roads for SITE- S SKP-5 (Narang Mandi)

Based on the existing trends and keeping in view the future demands in the adjoining areas the proposed zone has designated as a residential area with all the required provisions of basic facilities such as water supply, electricity etc.

Proposed Population (2035) 117255
Total Area of Site 2634 Acres
Proposed Residential Area 1540 Acres

<table>
<thead>
<tr>
<th>Required Infrastructure/ Utilities (by 2035)</th>
<th>Estimated Per Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td></td>
</tr>
<tr>
<td>Estimated Number of Housing Units</td>
<td>8190</td>
</tr>
<tr>
<td>Electricity (based on 30% demand factor)</td>
<td>12 MW</td>
</tr>
<tr>
<td>Natural Gas (based on 219 cubic meter/c/y)</td>
<td>70353 cubic m/day</td>
</tr>
<tr>
<td>Water (based on 300LPCD)</td>
<td>14.3 Cusecs</td>
</tr>
<tr>
<td>Wastewater Production</td>
<td>11.44 Cusecs</td>
</tr>
<tr>
<td>Solid Waste Production (0.85kg/c/d)</td>
<td>100 Tons/day</td>
</tr>
</tbody>
</table>

Environmental Impacts Due To Proposed Amendments in PA-SKP-5 (Narang Mandi):

- The growth rate of population, progressive migration of people from the nearby areas towards the area and the establishment of numerous industries has resulted in an increase in water demand 14.3 Cusecs for residential area. The continuous extraction of ground water will have negative impact on ground water aquifer which is already depleting at 2.5-3.0 feet per year. Estimated production of waste water from residential units till 2035 will be 11.44 cusecs. The residential waste water have pollution load (COD-500, BOD-250 and TSS-300) which may deteriorate the surface water – River Ravi water quality.
Chapter 6: SCREENING OF POTENTIAL ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

- The Vehicular traffic from residential area will generate CO, NOx, PM and CO2 emissions which may have variety of health impacts to the commuters and persons living in residencies.

- Considering population of area by 2035, the total municipal solid waste will be generated 100 tons/day. Municipal solid waste produced from area if not managed properly, will cause aesthetic problems and also produce odor along with the spread of many diseases. Similarly, medical waste produced from medical facilities etc. if not properly managed and disposed, it can result in injury by contaminated sharp material and infection with Hepatitis B, C, and HIV etc.

- Noise pollution will be generated from vehicles travelling in the residential area with noise level 60 to 70 dBA. Noise pollution may results in hearing related diseases and may causes effects on local biodiversity. Development of area leads towards increase in vehicles on roads. Which if not properly managed will result in wastage of time as well as air and noise pollution.

- The LDA will require land acquisition for widening and improvement of the existing roads, development of bypass roads for various existing town/villages etc, development of inter town and villages roads, development of new main roads, connecting roads, accessibility roads, sewerage systems including pumping stations, disposal stations, treatment plants, development of recreational areas, public utilities, buildings, administration buildings, toll stations and weighing stations.

- The main negative impact expected from the development in this area is the loss of 1540 acres of agricultural land. The other negative impacts are loss of biodiversity, habitat loss and fragmentation. The indirect impact include loss of livelihood to the peoples belongs to the agriculture activities.

- As the prime purpose of the amendments in master plan is to systemize the unplanned growth, so implementation of this plan at Proposed sites will improve the socio-cultural environment. Planned development will ensure the cost effective provision of public utilities from government. It will improve the
esthetic beauty of the area and make certain the sustainable development of area.

Conclusion:

Considering the baseline of the areas of Narang Mandi, the residential area is lacking in the basic infrastructure, unplanned and illegal growth of residential areas. This unplanned growth has resulted in the land mafia who are providing sub-standard living in the area with the provision of basic facilities. This has resulted in the pollution and other social issues.

If the proposed amendment area remains as such then the unplanned urban growth related with increase in population will result in miserable situation with high negative impact on environment and social settings of the area.

With the implementation of the proposed PA-SKP-5 site few impacts will be generated due to development of the area which mainly includes land acquisition, loss of 1540 acres of agriculture land, generation of 11.44 cusecs of wastewater from residential area and 100 tons/day of solid waste uptill 2035.

With the provision of the basic infrastructure, proper sewerage system, upgraded road network, residential structures and societies based on the LDA rules and regulations the existing situation will improve. The mitigation for these impacts have been proposed in the next section. After the Environmental Analysis of site, it can be concluded that the proposed site is feasible for future development. Further, the implementation of the environmental mitigation measures, proper monitoring and compliance of the environmental standards/legislations will make the Project environmentally more sustainable.
Chapter 6: SCREENING OF POTENTIAL ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

PA-SKP-6 (Sharaqpur)

Proposed Land uses of SITE- SKP-6 (Sharaqpur)

Proposed Intra City Roads for SITE- S SKP-6 (Sharaqpur)
Chapter 6: SCREENING OF POTENTIAL ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

Considering the existing growth of the area and future trends and keeping in view the demand of the nearby industrial areas the proposed Sharaqpur zone has been designated for the residential purposes as detailed below:

Proposed Population (2035) 67297
Total Area of Site 1296 Acres
Area Proposed Residential 732 Acres

<table>
<thead>
<tr>
<th>Required Infrastructure/ Utilities</th>
<th>Estimated Per Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td></td>
</tr>
<tr>
<td>Estimated Number of Housing Units</td>
<td>3459</td>
</tr>
<tr>
<td>Electricity (based on 30% demand factor)</td>
<td>5.1 MW</td>
</tr>
<tr>
<td>Natural Gas (based on 219 cubic meter/c/y)</td>
<td>40378 cubic m/day</td>
</tr>
<tr>
<td>Water (based on 300LPCD)</td>
<td>8.25 Cusecs</td>
</tr>
<tr>
<td>Wastewater Production</td>
<td>6.6 Cusecs</td>
</tr>
<tr>
<td>Solid Waste Production (0.85kg/c/d)</td>
<td>57.2 Tons/day</td>
</tr>
</tbody>
</table>

Environmental Impacts Due To Proposed Amendments in PA-SKP-6 (Sharaqpur):

- The Vehicular traffic from residential area will generate CO, NOx, PM and CO2 emissions which may have variety of health impacts to the commuters and persons living in residencies.

- The growth rate of population, progressive migration of people from the nearby areas towards the area and the establishment of numerous industries has resulted in increase in water demand 8.25 cusecs for residential area. The continuous extraction of ground water will have negative impact on ground water aquifer which is already depleting at 2.5-3.0 feet per year.

- Considering population of area by 2035, the total municipal solid waste will be generated 57.2 tons/day. Municipal solid waste produced from area if not
managed properly, will cause aesthetic problems and also produce odor along with the spread of many diseases. Similarly, medical waste produced from medical facilities etc. if not properly managed and disposed, it can result in injury by contaminated sharp material and infection with Hepatitis B, C, and HIV etc.

- Noise pollution will be generated from vehicles travelling in the residential area with noise level 50 to 60 dBA. Noise pollution may results in hearing related diseases and may causes effects on local biodiversity. Development of area leads towards increase in vehicles on roads. Which if not properly managed will result in wastage of time as well as air and noise pollution.

- Estimated production of waste water from residential units till 2035 will be 6.6 Cusecs. The residential waste water have pollution load (COD-500, BOD-250 and TSS-300) which may detoritate the surface water – River Ravi water quality

- The LDA will require land acquisition for widening and improvement of the existing roads, development of bypass roads for various existing town/villages etc, development of inter town and villages roads, development of new main roads, connecting roads, accessibility roads, sewerage systems including pumping stations, disposal stations, treatment plants, development of recreational areas, public utilities, buildings, administration buildings, toll stations and weighing stations.

- The main negative impact expected from the development in this area is the loss of 732 acres of agricultural land. The other negative impacts are loss of biodiversity, habitat loss and fragmentation. The indirect impact include loss of livelihood to the peoples belongs to the agriculture activities.

- As the prime purpose of the amendments in master plan is to systemize the unplanned growth, so implementation of this plan at Proposed sites will improve the socio-cultural environment. Planned development will ensure the cost effective provision of public utilities from government. It will improve the esthetic beauty of the area and make certain the sustainable development of area.
Conclusion:

Based on the existing condition which are unplanned development without basic infrastructure, if the proposed amendment area remains as such then the unplanned urban growth related with increase in population will result in highly adverse living conditions with adverse impacts on environment and social settings of the area.

However, with the notification and implementation of the proposed PA-SKP-6 site few impacts will be generated due to development of the area which mainly includes land acquisition, loss of 732 acres of agriculture land, generation of 6.6 cusecs of wastewater from residential area and 57.2 tons/day of solid waste until 2035 for which the mitigation for these impacts have been proposed in the next section.

After the Environmental Analysis of the site, it can be concluded that the proposed site is feasible for future residential development with the provision of basic amenities like potable water, sewerage system, schools, hospitals, provision of green belts, road etc. as per LDA rules.

Further, the implementation of the environmental mitigation measures, proper monitoring and compliance of the environmental standards/legislations will make the Project environmentally more sustainable.
Chapter 6: SCREENING OF POTENTIAL ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

PA-SKP-7 (Safdarabad)

Proposed Land uses of SITE- SKP-7 (Safdarabad)

Proposed Intra City Roads for SITE- S SKP-7 (Safdarabad)
Considering the existing growth of the area and future trends and keeping in view the demand of the nearby industrial areas the proposed Safdarabad zone has been designated for the residential purposes as detailed below:

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed Population (2035)</td>
<td>48825</td>
</tr>
<tr>
<td>Total Area of Site</td>
<td>769 Acres</td>
</tr>
<tr>
<td>Area Proposed for Residential</td>
<td>530 Acres</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Required Infrastructure/ Utilities (by 2035)</th>
<th>Estimated Per Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td></td>
</tr>
<tr>
<td>Estimated Number of Housing Units</td>
<td>3665</td>
</tr>
<tr>
<td>Electricity (based on 30% demand factor)</td>
<td>5.4 MW</td>
</tr>
<tr>
<td>Natural Gas (based on 219 cubic meter/c/y)</td>
<td>29295 cubic m/day</td>
</tr>
<tr>
<td>Water (based on 300LPCD)</td>
<td>5.9 Cusecs</td>
</tr>
<tr>
<td>Wastewater Production</td>
<td>4.72 Cusecs</td>
</tr>
<tr>
<td>Solid Waste Production (0.85kg/c/d)</td>
<td>41.5 Tons/day</td>
</tr>
</tbody>
</table>

Environmental Impacts Due to Proposed Amendments in PA-SKP-7 (Safdarabad):

- The vehicular traffic from residential area will generate CO, NOx, PM and CO2 emissions which may have variety of health impacts to the commuters and persons living in residencies.

- The growth rate of population, progressive migration of people from the nearby areas towards the area and the establishment of numerous industries has resulted in increase in water demand 5.9 cusecs for residential area. The continuous extraction of ground water will have negative impact on ground water aquifer which is already depleting at 2.5-3.0 feet per year.

- Estimated production of waste water from residential units till 2035 will be 4.72 Cusecs. The residential waste water have pollution load (COD-500,
Chapter 6: SCREENING OF POTENTIAL ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

BOD-250 and TSS-300) which may deteriorate the surface water – River Ravi water quality

- Considering population of area by 2035, the total municipal solid waste will be generated 41.5 tons/day. Municipal solid waste produced from area if not managed properly, will cause aesthetic problems and also produce odor along with the spread of many diseases. Similarly, medical waste produced from medical facilities etc. if not properly managed and disposed, it can result in injury by contaminated sharp material and infection with Hepatitis B, C, and HIV etc.

- Noise pollution will be generated from vehicles travelling in the residential area with noise level 60 to 70 dBA. Development of area leads towards increase in vehicles on roads. Which if not properly managed will result in wastage of time as well as air and noise pollution. Noise pollution may results in hearing related diseases and may causes effects on local biodiversity.

- The LDA will require land acquisition for widening and improvement of the existing roads, development of bypass roads for various existing town/villages etc, development of inter town and villages roads, development of new main roads, connecting roads, accessibility roads, sewerage systems including pumping stations, disposal stations, treatment plants, development of recreational areas, public utilities, buildings, administration buildings, toll stations and weighing stations.

- The main negative impact expected from the development in this area is the loss of 530 acres of agricultural land. The other negative impacts are loss of biodiversity, habitat loss and fragmentation. The indirect impact include loss of livelihood to the peoples belongs to the agriculture activities.

- As the prime purpose of the amendments in master plan is to systemize the unplanned growth, so implementation of this plan at Proposed sites will improve the socio-cultural environment. Planned development will ensure the cost effective provision of public utilities from government. It will improve the esthetic beauty of the area and make certain the sustainable development of area.
Conclusion:

Based on the existing condition which are unplanned development without basic infrastructure, if the proposed amendment area remains as such then the unplanned urban growth related with increase in population will result in highly adverse living conditions with adverse impacts on environment and social settings of the area.

However, with the notification and implementation of the proposed site few impacts will be generated due to development of the area which mainly includes land acquisition, loss of 530 acres of agriculture land, generation of 4.72 cusecs of wastewater from residential area and 41.5 tons/day of solid waste until 2035 for which the mitigation for these impacts have been proposed in the next section. After the Environmental Analysis of site, it can be concluded that the proposed site is feasible for future development. Further, the implementation of the environmental mitigation measures, proper monitoring and compliance of the environmental standards/legislations will make the Project environmentally more sustainable.

PA-SKP-8 ((Bhiki))

Proposed Land uses of SITE- SKP-8 ((Bhiki))
Proposed Intra City Roads for SITE- S SKP-8 ((Bhiki))

Considering the existing growth of the area and future trends and keeping in view the demand of the nearby industrial areas the proposed Bhiki zone has been designated for the residential purposes as detailed below:

- **Current Population (2015)**: 47752
- **Proposed Population (2035)**: 105641
- **Total Area of Site**: 7650 Acres
Chapter 6: SCREENING OF POTENTIAL ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

| Area Proposed for Residential | 1480 Acres |
| Industrial Purposed | 4788 Acres |

Required Infrastructure/ Utilities (by 2035)

<table>
<thead>
<tr>
<th>Residential</th>
<th>Estimated Per Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimated Number of Housing Units</td>
<td>7930</td>
</tr>
<tr>
<td>Electricity (based on 30% demand factor)</td>
<td>11 MW</td>
</tr>
<tr>
<td>Natural Gas (based on 219 cubic meter/c/y)</td>
<td>63384 cubic m/day</td>
</tr>
<tr>
<td>Water (based on 300LPCD)</td>
<td>12.9 Cusecs</td>
</tr>
<tr>
<td>Wastewater Production</td>
<td>10.3 Cusecs</td>
</tr>
<tr>
<td>Solid Waste Production (0.85kg/c/d)</td>
<td>89.7 Tons/day</td>
</tr>
</tbody>
</table>

Environmental Impacts Due To Proposed Amendments in PA-SKP-8 ((Bhiki))

- The vehicular traffic from residential area will generate CO, NOx, PM and CO2 emissions which may have variety of health impacts to the commuters and persons living in residencies.

- The growth rate of population, progressive migration of people from the nearby areas towards the area and the establishment of numerous industries has resulted in increase in water demand 12.9 Cusecs for residential area. The continuous extraction of ground water will have negative impact on ground water aquifer which is already depleting at 2.5-3.0 feet per year. Estimated production of waste water from residential units till 2035 will be 10.3 Cusecs. The residential waste water have pollution load (COD-500, BOD-250 and TSS-300) which may detoriate the surface water – River Ravi water quality.

- Considering population of area by 2035, the total municipal solid waste will be generated 89.3 tons/day. Municipal solid waste produced from area if not managed properly, will cause aesthetic problems and also produce odor along with the spread of many diseases. Similarly, medical waste produced from medical facilities etc. if not properly managed and disposed, it can result in injury by contaminated sharp material and infection with Hepatitis B, C, and HIV etc.
The LDA will require land acquisition for widening and improvement of the existing roads, development of bypass roads for various existing town/villages etc, development of inter town and villages roads, development of new main roads, connecting roads, accessibility roads, sewerage systems including pumping stations, disposal stations, treatment plants, development of recreational areas, public utilities, buildings, administration buildings, toll stations and weighing stations.

The main negative impact expected from the development in this area is the loss of 6268 acres of agricultural land. The other negative impacts are loss of biodiversity, habitat loss and fragmentation. The indirect impact include loss of livelihood to the peoples belongs to the agriculture activities.

Noise pollution will be generated from vehicles travelling in the residential area with noise level 60 to 70 dBA. Development of area leads towards increase in vehicles on roads. Which if not properly managed will result in wastage of time as well as air and noise pollution. Noise pollution may results in hearing related diseases and may causes effects on local biodiversity.

As the prime purpose of the amendments in master plan is to systemize the unplanned growth, so implementation of this plan at Proposed sites will improve the socio-cultural environment. Planned development will ensure the cost effective provision of public utilities from government. It will improve the esthetic beauty of the area and make certain the sustainable development of area.

Conclusion:

Based on the existing condition which are unplanned development without basic infrastructure, If the proposed amendment area remains as such then the unplanned urban growth related with increase in population will result in highly adverse living conditions with adverse impacts on environment and social settings of the area.

If the proposed amendment area remains as such then the unplanned urban growth related with increase in population will result in miserable situation with high negative impact on environment and social settings of the area.
However, with the notification and implementation of the proposed few impacts will be generated due to development of the area which mainly includes land acquisition, loss of 6268 acres of agriculture land, generation of 10.3 cusecs of wastewater from residential area and 89.7 tons/day of solid waste up till 2035 for which the mitigation for these impacts have been proposed in the next section. After the Environmental Analysis of site, it can be concluded that the proposed site is feasible for future development. Further, the implementation of the environmental mitigation measures, proper monitoring and compliance of the environmental standards/legislations will make the Project environmentally more sustainable.

PA-SKP-09 (Ferozwatwan)
Proposed Intra City Roads for SITE- SKP-09 (Ferozwatwan)

The proposed site PA-SKP-09 based on the existing trend and existing setup has been selected for the residential and industrial areas. Accordingly, an improvement in the road network has also been proposed considering the future load of the traffic due to the industrial, commercial and residential activities. Following are the existing and proposed setup of this site:

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed Population (2035)</td>
<td>143557</td>
</tr>
<tr>
<td>Total Area of Site</td>
<td>5643 Acres</td>
</tr>
<tr>
<td>Area Proposed for Residential</td>
<td>1742 Acres</td>
</tr>
<tr>
<td>Industrial Proposed</td>
<td>2237 Acres</td>
</tr>
<tr>
<td>Required Infrastructure/ Utilities (by 2035)</td>
<td>Estimated Per Day</td>
</tr>
<tr>
<td>Residential</td>
<td></td>
</tr>
<tr>
<td>Estimated Number of Housing Units</td>
<td>10776</td>
</tr>
<tr>
<td>Electricity (based on 30% demand factor)</td>
<td>16.1 MW</td>
</tr>
</tbody>
</table>
Natural Gas (based on 219 cubic meter/c/y) 86134 cubic m/day
Water (based on 300LPCD) 17 Cusecs
Wastewater Production 13.6 Cusecs
Solid Waste Production (0.85kg/c/d) 122 Tons/day

Industrial

Estimated Number of Medium industrial Units 116
Estimated Number of Heavy Industrial Units 35
Electricity (100% demand factor) 233 MW
Natural Gas 2332000 cubic m/day
Water 284 Cusecs
Wastewater Production 227 Cusecs
Solid Waste Production (0.85kg*1000/c/d) 345 Tons/day

Environmental Impacts Due To Proposed Amendments in PA-SKP-09 (Ferozwatwan):

- The growth rate of population, progressive migration of people from the nearby areas towards the area and the establishment of numerous industries has resulted in increase in water demand (17 Cusecs for residential and 284 Cusecs for industrial). The continuous extraction of ground water will have negative impact on ground water aquifer which is already depleting at 2.5-3.0 feet per year.

- Estimated production of waste water from residential units till 2035 will be 13.6 Cusecs and from industrial units are 227 Cusecs. The residential waste water have pollution load (COD-500, BOD-250 and TSS-300) which may detoriate the surface water – River Ravi water quality. The industrial waste water have pollution load (COD-2500, BOD-1000 and TSS-900) which may deteriate the surface water – River Ravi water quality.

- The operation of industry generates CO, NOx, Sox and PM which may detoriate the ambient air quality of the area. The green house gasses estimated CO2 equivalent emissions from this industry area will be 36.65 million tones uptill 2035. The Vehicular traffic from residential and industrial
area will generate CO, NOx, PM and CO2 emissions which may have variety of health impacts to the commuters and persons living in residencies.

- Noise pollution will be generated from vehicles travelling and from industrial zones. The average noise level generated from industrial units is 70 to 80 dBA. Development of area leads towards increase in vehicles on roads. Which if not properly managed will result in wastage of time as well as air and noise pollution. Noise pollution may results in hearing related diseases and may causes effects on local biodiversity.

- Considering population of area by 2035, the total municipal solid waste will be generated 145 tons/day. Municipal solid waste produced from area if not managed properly, will cause aesthetic problems and also produce odor along with the spread of many diseases. Similarly, medical waste produced from medical facilities etc. if not properly managed and disposed, it can result in injury by contaminated sharp material and infection with Hepatitis B, C, and HIV etc. From industries estimated solid waste production is 345 tons/day. This can cause severe public as well as environmental health issues if not properly disposed.

- The LDA will require land acquisition for widening and improvement of the existing roads, development of bypass roads for various existing town/villages etc, development of inter town and villages roads, development of new main roads, connecting roads, accessibility roads, sewerage systems including pumping stations, disposal stations, treatment plants, development of recreational areas, public utilities, buildings, administration buildings, toll stations and weighing stations.

- The main negative impact expected from the development in this area is the loss of 3979 acres of agricultural land. The other negative impacts are loss of biodiversity, habitat loss and fragmentation. The indirect impact include loss of livelihood to the peoples belongs to the agriculture activities.

- As the prime purpose of the amendments in master plan is to systemize the unplanned growth, so implementation of this plan at Proposed sites will improve the socio-cultural environment. Planned development will ensure the
cost effective provision of public utilities from government. It will improve the esthetic beauty of the area and make certain the sustainable development of area.

Conclusion:

If the areas selected for the residential and industrial development are not notified in the amendment plan, the existing unplanned residential areas and illegal industries will keep on increasing in number without the provision of the basic infrastructure such as water supply, sewerage system, wastewater treatment facilities, improved roads and proper emissions control to avoid the air and noise pollution. This will result in greater socio-economic, socio-political issues, pollution and contamination of the resources.

If the proposed amendment area remains as such then the unplanned urban growth related with increase in population will result in miserable situation with high negative impact on environment and social settings of the area. However, few impacts will be generated due to development of the area which mainly includes land acquisition, loss of 3979 acres agriculture land, generation of 13.6 cusecs of wastewater and 122 tons/day of solid waste from residential area, generation of 227 cusecs of wastewater and 345 tons/day of solid waste from industrial area uptill 2035. The green house gasses estimated CO2 equivalent emissions from industrial area will be 36.65 million tones uptill 2035 for which the mitigation for these impacts have been proposed in the next section. After the Environmental Analysis of site, it can be concluded that the proposed site is feasible for future development. Further, the implementation of the environmental mitigation measures, proper monitoring and compliance of the environmental standards/legislations will make the Project environmentally more sustainable.
Chapter 6: SCREENING OF POTENTIAL ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

PA-SKP-10 (Manawala)

Proposed Land uses of SITE- SKP-10 (Manawala)

Proposed Intra City Roads for SITE- SKP-10 (Manawala)
Considering the existing growth of the area and future trends and keeping in view the demand of the nearby industrial areas the proposed Manawala zone has been designated for the residential purposes as detailed below:

Current Population (2015) 50205

Proposed Population (2035) 111067

Total Area of Site 1831 Acres

Area Proposed for Residential 1230 Acres

<table>
<thead>
<tr>
<th>Required Infrastructure/ Utilities (by 2035)</th>
<th>Estimated Per Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td></td>
</tr>
<tr>
<td>Estimated Number of Housing Units</td>
<td>8337</td>
</tr>
<tr>
<td>Electricity (based on 30% demand factor)</td>
<td>12.5 MW</td>
</tr>
<tr>
<td>Natural Gas (based on 219 cubic meter/c/y)</td>
<td>66640 cubic m/day</td>
</tr>
<tr>
<td>Water (based on 300LPCD)</td>
<td>1.39 Cusecs</td>
</tr>
<tr>
<td>Wastewater Production</td>
<td>0.5 Cusecs</td>
</tr>
<tr>
<td>Solid Waste Production (0.85kg/c/d)</td>
<td>94 Tons/day</td>
</tr>
</tbody>
</table>

Environmental Impacts Due To Proposed Amendments in PA-SKP-10 (Manawala):

- Estimated production of waste water from residential units till 2035 will be 0.5 Cusecs. The residential waste water have pollution load (COD-500, BOD-250 and TSS-300) which may deteriorate the surface water – River Ravi water quality.

- The Vehicular traffic from residential area will generate CO, NOx, PM and CO2 emissions which may have variety of health impacts to the commuters and persons living in residencies

- The growth rate of population, progressive migration of people from the nearby areas towards the area and the establishment of numerous industries has resulted in increase in water demand 1.39 Cusecs for residential area.
Chapter 6: SCREENING OF POTENTIAL ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

The continuous extraction of ground water will have negative impact on ground water aquifer which is already depleting at 2.5-3.0 feet per year.

- Considering population of area by 2035, the total municipal solid waste will be generated 94 tons/day. Municipal solid waste produced from area if not managed properly, will cause aesthetic problems and also produce odor along with the spread of many diseases. Similarly, medical waste produced from medical facilities etc. if not properly managed and disposed, it can result in injury by contaminated sharp material and infection with Hepatitis B, C, and HIV etc.

- Noise pollution will be generated from vehicles travelling in the residential area with noise level 60 to 70 dBA. Development of area leads towards increase in vehicles on roads. Which if not properly managed will result in wastage of time as well as air and noise pollution. Noise pollution may results in hearing related diseases and may causes effects on local biodiversity.

- The main negative impact expected from the development in this area is the loss of 1230 acres of agricultural land. The other negative impacts are loss of biodiversity, habitat loss and fragmentation. The indirect impact include loss of livelihood to the peoples belongs to the agriculture activities.

- The LDA will require land acquisition for widening and improvement of the existing roads, development of bypass roads for various existing town/villages etc, development of inter town and villages roads, development of new main roads, connecting roads, accessibility roads, sewerage systems including pumping stations, disposal stations, treatment plants, development of recreational areas, public utilities, buildings, administration buildings, toll stations and weighing stations.

- As the prime purpose of the amendments in master plan is to systemize the unplanned growth, so implementation of this plan at Proposed sites will improve the socio-cultural environment. Planned development will ensure the cost effective provision of public utilities from government. It will improve the esthetic beauty of the area and make certain the sustainable development of area.
Chapter 6: SCREENING OF POTENTIAL ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

Conclusion:

Based on the existing condition which are unplanned development without basic infrastructure, If the proposed amendment area remains as such then the unplanned urban growth related with increase in population will result in highly adverse living conditions with adverse impacts on environment and social settings of the area. If the proposed amendment area remains as such then the unplanned urban growth related with increase in population will result in miserable situation with high negative impact on environment and social settings of the area.

However, with the implementation of this proposed amendment few impacts will be generated due to development of the area which mainly includes land acquisition, loss of 1230 acres of agriculture land, generation of 0.5 cusecs of wastewater from residential area and 94 tons/day of solid waste uptill 2035 for which the mitigation for these impacts have been proposed in the next section.

After the Environmental Differential Analysis of site with the existing datum and future development without and with project, it can be concluded that the proposed site is feasible for future development. Further, the implementation of the environmental mitigation measures, proper monitoring and compliance of the environmental standards/legislations will make the Project environmentally more sustainable.
Proposed Land uses of SITE- SKP-11 (KhanqaDogran)

Based on the collected baseline the proposed area of the Khanqa Dogran is being utilized for the residential and industrial purposes. Therefore, based on the socio-
Amendment in Master Plan for Lahore Division (The Project)
Environment Impact Assessment (EIA) Report

Chapter 6: SCREENING OF POTENTIAL ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

Economic trends and future demands the proposed site PA-SKP-11 has been recommended for the industrial and residential uses as detailed below:

Proposed Population (2035) 90071
Total Area of Site 1439 Acres
Area Proposed for Residential 831 Acres
Proposed Industrial 153

<table>
<thead>
<tr>
<th>Required Infrastructure/ Utilities (by 2035)</th>
<th>Estimated Per Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td></td>
</tr>
<tr>
<td>Estimated Number of Housing Units</td>
<td>5967</td>
</tr>
<tr>
<td>Electricity (based on 30% demand factor)</td>
<td>8.9 MW</td>
</tr>
<tr>
<td>Natural Gas (based on 219 cubic meter/c/y)</td>
<td>54042 cubic m/day</td>
</tr>
<tr>
<td>Water (based on 300LPCD)</td>
<td>11 Cusecs</td>
</tr>
<tr>
<td>Wastewater Production</td>
<td>8.8 Cusecs</td>
</tr>
<tr>
<td>Solid Waste Production (0.85kg/c/d)</td>
<td>76 Tons/day</td>
</tr>
</tbody>
</table>

Industrial	
Estimated Number of small industrial Units	10
Estimated Number of medium Industrial Units	02
Electricity (100% demand factor)	1.25 MW
Natural Gas	90,000 cubic m/day
Water	11 Cusecs
Wastewater Production	8.8 Cusecs
Solid Waste Production (0.85kg*1000/c/d)	7 Tons/day
Environmental Impacts Due To Proposed Amendments in PA-SKP-11 (Khanqa Dogran):

Based on the baseline datum and considering the differential analysis with the existing and proposed development with and without project following potential impacts are assessed:

- The growth rate of population, progressive migration of people from the nearby areas towards the area and the establishment of numerous industries has resulted in increase in water demand (11 Cusecs for residential and 11 Cusecs for industrial). The continuous extraction of ground water will have negative impact on ground water aquifer which is already depleting at 2.5-3.0 feet per year.

- The operation of industry generates CO, NOx, Sox and PM which may detoriate the ambient air quality of the area. The greenhouse gasses estimated CO2 equivalent emissions from this industry area will be 0.70 million tones up till 2035. The Vehicular traffic from residential and industrial area will generate CO, NOx, PM and CO2 emissions which may have variety of health impacts to the commuters and persons living in residencies.

- Estimated production of waste water from residential units till 2035 will be 8.8 Cusecs and from industrial units are 8.8 Cusecs. The residential waste water have pollution load (COD-500, BOD-250 and TSS-300) which may detoriate the surface water – River Ravi water quality The industrial waste water have pollution load (COD-1500, BOD-700 and TSS-500) which may deteriate the surface water – River Ravi water quality

- Noise pollution will be generated from vehicles travelling and from industrial zones. The average noise level generated from industrial units is 70 to 80 dBA. Development of area leads towards increase in vehicles on roads. Which if not properly managed will result in wastage of time as well as air and noise pollution. Noise pollution may results in hearing related diseases and may causes effects on local biodiversity.
Considering population of area by 2035, the total municipal solid waste will be generated 76 tons/day. Municipal solid waste produced from area if not managed properly, will cause aesthetic problems and also produce odor along with the spread of many diseases. Similarly, medical waste produced from medical facilities etc. if not properly managed and disposed, it can result in injury by contaminated sharp material and infection with Hepatitis B, C, and HIV etc. From industries estimated solid waste production is 07 tons/day. This can cause severe public as well as environmental health issues if not properly disposed.

The LDA will require land acquisition for widening and improvement of the existing roads, development of bypass roads for various existing town/villages etc, development of inter town and villages roads, development of new main roads, connecting roads, accessibility roads, sewerage systems including pumping stations, disposal stations, treatment plants, development of recreational areas, public utilities, buildings, administration buildings, toll stations and weighing stations.

The main negative impact expected from the development in this area is the loss of 1000 acres of agricultural land. The other negative impacts are loss of biodiversity, habitat loss and fragmentation. The indirect impact include loss of livelihood to the peoples belongs to the agriculture activities.

As the prime purpose of the amendments in master plan is to systemize the unplanned growth, so implementation of this plan at Proposed sites will improve the socio-cultural environment. Planned development will ensure the cost effective provision of public utilities from government. It will improve the esthetic beauty of the area and make certain the sustainable development of area.

Conclusion:

As already mentioned that the above the proposed site is being used for the industrial and residential purpose without any planning or following any development plan as per the local government rules. Therefore, the existing industrial and residential areas lacks proper provision of the basic infrastructure and facilities. Most
of the area lacks proper sewerage system and drains. Hence the area is exploiting the resources and creating pollution and unhygienic conditions for the residents as well as the workers working in the illegally setup industries.

If the proposed amendment area remains as such then the unplanned urban growth related with increase in population will result in miserable situation with high negative impact on environment and social settings of the area. However, few impacts will be generated due to development of the area which mainly includes land acquisition, loss of 1000 acres agriculture land, generation of 8.8 cusecs of wastewater and 76 tons/day of solid waste from residential area, generation of 8.8 cusecs of wastewater and 7 tons/day of solid waste from industrial area uptill 2035. The green house gasses estimated CO2 equivalent emissions from industrial area will be 0.7 million tones uptill 2035 for which the mitigation for these impacts have been proposed in the next section.

Based on the Environmental Analysis of site with respect to the baseline, it can be concluded that the proposed site is feasible for future development. Further, the implementation of the environmental mitigation measures, proper monitoring and compliance of the environmental standards/legislations will make the Project environmentally more sustainable.
Chapter 6: SCREENING OF POTENTIAL ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

PA-SKP-12 (JandialaSher Khan)

Proposed Land uses of SITE- SKP-12 (JandialaSher Khan)

Proposed Intra City Roads for SITE- SKP-12 (JandialaSher Khan)
Based on the existing landuse and trend, keeping the view the future trends and demands of the nearby areas the proposed PA-SKP-12 has been proposed for the residential area as detailed below:

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed Population (2035)</td>
<td>44859</td>
</tr>
<tr>
<td>Total Area of Site</td>
<td>739 Acres</td>
</tr>
<tr>
<td>Area Proposed for Residential</td>
<td>415 Acres</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Required Infrastructure/ Utilities (by 2035)</th>
<th>Estimated Per Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential Estimated Number of Housing Units</td>
<td>3367</td>
</tr>
<tr>
<td>Electricity (based on 30% demand factor)</td>
<td>4 MW</td>
</tr>
<tr>
<td>Natural Gas (based on 219 cubic meter/c/y)</td>
<td>26915 cubic m/day</td>
</tr>
<tr>
<td>Water (based on 300LPCD)</td>
<td>5.5 Cusecs</td>
</tr>
<tr>
<td>Wastewater Production</td>
<td>4.4 Cusecs</td>
</tr>
<tr>
<td>Solid Waste Production (0.85kg/c/d)</td>
<td>38 Tons/day</td>
</tr>
</tbody>
</table>

Environmental Impacts Due To Proposed Amendments in PA-SKP-12 (JandialaSher Khan):

- The vehicular traffic from residential area will generate CO, NOx, PM and CO2 emissions which may have variety of health impacts to the commuters and persons living in residencies.

- The growth rate of population, progressive migration of people from the nearby areas towards the area and the establishment of numerous industries has resulted in increase in water demand 5.5 Cusecs for residential area. The continuous extraction of ground water will have negative impact on ground water aquifer which is already depleting at 2.5-3.0 feet per year.

- Estimated production of waste water from residential units till 2035 will be 4.4 Cusecs. The residential waste water have pollution load (COD-500, BOD-250
Considering population of area by 2035, the total municipal solid waste will be generated 38 tons/day. Municipal solid waste produced from area if not managed properly, will cause aesthetic problems and also produce odor along with the spread of many diseases. Similarly, medical waste produced from medical facilities etc. if not properly managed and disposed, it can result in injury by contaminated sharp;2 material and infection with Hepatitis B, C, and HIV etc.

Noise pollution will be generated from vehicles travelling in the residential area with noise level 60 to 70 dBA. Development of area leads towards increase in vehicles on roads. Which if not properly managed will result in wastage of time as well as air and noise pollution. Noise pollution may results in hearing related diseases and may causes effects on local biodiversity.

The LDA will require land acquisition for widening and improvement of the existing roads, development of bypass roads for various existing town/villages etc, development of inter town and villages roads, development of new main roads, connecting roads, accessibility roads, sewerage systems including pumping stations, disposal stations, treatment plants, development of recreational areas, public utilities, buildings, administration buildings, toll stations and weighing stations.

The main negative impact expected from the development in this area is the loss of 415 acres of agricultural land. The other negative impacts are loss of biodiversity, habitat loss and fragmentation. The indirect impact include loss of livelihood to the peoples belongs to the agriculture activities. As the prime purpose of the amendments in master plan is to systemize the unplanned growth, so implementation of this plan at Proposed sites will improve the socio-cultural environment. Planned development will ensure the cost effective provision of public utilities from government. It will improve the esthetic beauty of the area and make certain the sustainable development of area.
Conclusion:

The existing land use represent an unplanned haphazard residential growth which lacks provision of basic infrastructure and amenities without any legal cover or following any local approved plan.

If the proposed amendment area remains as such then the unplanned urban growth related with increase in population will result in miserable situation with high negative impact on environment and social settings of the area. However, few impacts will be generated due to development of the area which mainly includes land acquisition, loss of 415 acres of agriculture land, generation of 4.4 cusecs of wastewater from residential area and 38 tons/day of solid waste uptill 2035 for which the mitigation for these impacts have been proposed in the next section.

Based on the Environmental Analysis of proposed site with exiting baseline with project and with project future estimates, it can be concluded that the proposed site is feasible for future development. Further, the implementation of the environmental mitigation measures, proper monitoring and compliance of the environmental standards/legislations will make the Project environmentally more sustainable.
PA-SKP-13 (Jabran)

Proposed Land uses of SITE- SKP-13 (Jabran)

Proposed Intra City Roads for SITE- SKP-13 (Jabran)
Based on the existing trends and keeping in view the future demands in the nearby areas due to the industrial development activity, the proposed site has been designated for the residential purpose as detailed below:

Current Population (2015) 39509

Proposed Population (2035) 87406

Total Area of Site 1011 Acres

Area Proposed for Residential 700 Acres

<table>
<thead>
<tr>
<th>Required Infrastructure/ Utilities (by 2035)</th>
<th>Estimated Per Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td></td>
</tr>
<tr>
<td>Estimated Number of Housing Units</td>
<td>6561</td>
</tr>
<tr>
<td>Electricity (based on 30% demand factor)</td>
<td>9.5 MW</td>
</tr>
<tr>
<td>Natural Gas (based on 219 cubic meter/c/y)</td>
<td>52443 cubic m/day</td>
</tr>
<tr>
<td>Water (based on 300LPCD)</td>
<td>10 Cusecs</td>
</tr>
<tr>
<td>Wastewater Production</td>
<td>8 Cusecs</td>
</tr>
<tr>
<td>Solid Waste Production (0.85kg/c/d)</td>
<td>75 Tons/day</td>
</tr>
</tbody>
</table>

Environmental Impacts Due To Proposed Amendments in PA-SKP-13 (Jabran):

- The vehicular traffic from residential area will generate CO, NOx, PM and CO2 emissions which may have variety of health impacts to the commuters and persons living in residencies.

- The growth rate of population, progressive migration of people from the nearby areas towards the area and the establishment of numerous industries has resulted in increase in water demand 10 Cusecs for residential area. The continuous extraction of ground water will have negative impact on ground water aquifer which is already depleting at 2.5-3.0 feet per year.

- Estimated production of waste water from residential units till 2035 will be 08 Cusecs. The residential waste water have pollution load (COD-500, BOD-250
and TSS-300) which may detioriate the surface water – River Ravi water quality

- Considering population of area by 2035, the total municipal solid waste will be generated 75 tons/day. Municipal solid waste produced from area if not managed properly, will cause aesthetic problems and also produce odor along with the spread of many diseases. Similarly, medical waste produced from medical facilities etc. if not properly managed and disposed, it can result in injury by contaminated sharp; material and infection with Hepatitis B, C, and HIV etc.

- Noise pollution will be generated from vehicles travelling in the residential area with noise level 60 to 70 dBA. Development of area leads towards increase in vehicles on roads. Which if not properly managed will result in wastage of time as well as air and noise pollution. Noise pollution may results in hearing related diseases and may causes effects on local biodiversity.

- The main negative impact expected from the development in this area is the loss of 700 acres of agricultural land. The other negative impacts are loss of biodiversity, habitat loss and fragmentation. The indirect impact include loss of livelihood to the peoples belongs to the agriculture activities. As the prime purpose of the amendments in master plan is to systemize the unplanned growth, so implementation of this plan at Proposed sites will improve the socio-cultural environment. Planned development will ensure the cost effective provision of public utilities from government. It will improve the esthetic beauty of the area and make certain the sustainable development of area.

Conclusion:

Based on the existing conditions the locals are living in the unplanned areas without proper provision of basic amenities such as clear water, proper sewerage system, road or streets, low voltage etc.

If the proposed amendment area remains as such then the unplanned urban growth related with increase in population will result in miserable situation with high negative impact on environment and social settings of the area. However, few impacts will be
generated due to development of the area which mainly includes land acquisition, loss of 700 acres of agriculture land, generation of 08 cusecs of wastewater from residential area and 75 tons/day of solid waste uptill 2035 for which the mitigation for these impacts have been proposed in the next section.

Based on the Environmental Analysis of proposed site with respect to the existing baseline and with and without project scenario, it can be concluded that the proposed site is feasible for future development. Further, the implementation of the environmental mitigation measures, proper monitoring and compliance of the environmental standards/legislations will make the Project environmentally more sustainable.

PA-SKP-14 (Jaranwala Road)
The proposed areas of Jaranwala road is being used mainly for various residential purpose. Based on the trends and proposed development in the areas, the site PA-SKP-14 has been proposed for the residential purpose as detailed below:

Current Population (2015)
17573

Proposed Population (2035)
38876

Total Area of Site
3250 Acres

Area Proposed for Residential
2975 Acres
Chapter 6: SCREENING OF POTENTIAL ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

<table>
<thead>
<tr>
<th>Required Infrastructure/ Utilities</th>
<th>Estimated Per Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td></td>
</tr>
<tr>
<td>Estimated Number of Housing Units</td>
<td>21250</td>
</tr>
<tr>
<td>Electricity (based on 30% demand factor)</td>
<td>10 MW</td>
</tr>
<tr>
<td>Natural Gas (based on 219 cubic meter/c/y)</td>
<td>23325 cubic m/day</td>
</tr>
<tr>
<td>Water (based on 300LPCD)</td>
<td>0.67 Cusecs</td>
</tr>
<tr>
<td>Wastewater Production</td>
<td>0.53 Cusecs</td>
</tr>
<tr>
<td>Solid Waste Production (0.85kg/c/d)</td>
<td>3.3 Tons/day</td>
</tr>
</tbody>
</table>

Environmental Impacts Due To Proposed Amendments in PA-SKP-14 (Jaranwala Road):

- The growth rate of population, progressive migration of people from the nearby areas towards the area and the establishment of numerous industries has resulted in an increase in water demand 0.67 Cusecs for residential area. The continuous extraction of ground water will have a negative impact on ground water aquifer which is already depleting at 2.5-3.0 feet per year.

- Estimated production of waste water from residential units till 2035 will be 0.53 Cusecs. The residential waste water have pollution load (COD-500, BOD-250 and TSS-300) which may deteriorate the surface water – River Ravi water quality.

- The vehicular traffic from residential area will generate CO, NOx, PM and CO2 emissions which may have a variety of health impacts to the commuters and persons living in residencies.

- Considering population of area by 2035, the total municipal solid waste will be generated 3.3 tons/day. Municipal solid waste produced from area if not managed properly, will cause aesthetic problems and also produce odor along with the spread of many diseases. Similarly, medical waste produced from medical facilities etc. if not properly managed and disposed, it can result in injury by contaminated sharp;2 material and infection with Hepatitis B, C, and HIV etc.
• Noise pollution will be generated from vehicles travelling in the residential area with noise level 60 to 70 dBA. Development of area leads towards increase in vehicles on roads. Which if not properly managed will result in wastage of time as well as air and noise pollution. Noise pollution may results in hearing related diseases and may causes effects on local biodiversity.

• The main negative impact expected from the development in this area is the loss of 2975 acres of agricultural land. The other negative impacts are loss of biodiversity, habitat loss and fragmentation. The indirect impact include loss of livelihood to the peoples belongs to the agriculture activities.

• The LDA will require land acquisition for widening and improvement of the existing roads, development of bypass roads for various existing town/villages etc, development of inter town and villages roads, development of new main roads, connecting roads, accessibility roads, sewerage systems including pumping stations, disposal stations, treatment plants, development of recreational areas, public utilities, buildings, administration buildings, toll stations and weighing stations.

• As the prime purpose of the amendments in master plan is to systemize the unplanned growth, so implementation of this plan at Proposed sites will improve the socio-cultural environment. Planned development will ensure the cost effective provision of public utilities from government. It will improve the esthetic beauty of the area and make certain the sustainable development of area.

Conclusion:

Again this area is being developed without any proper planning therefore, no infrastructure, standard, basic amenities etc. are available.

If the proposed amendment area remains as such then the unplanned urban growth related with increase in population will result in miserable situation with high negative impact on environment and social settings of the area.

With the implementation of master plan amendment, these issues can be addressed. However, with the proposed site development few impacts will also be generated
due to development activities in the area which mainly includes land acquisition, loss of 2975 acres of agriculture land, generation of 0.5 cusecs of wastewater from residential area and 3.3 tons/day of solid waste uptill 2035 for which the mitigation for these impacts have been proposed in the next section.

After the Environmental Analysis of site, it can be concluded that the proposed site is feasible for future development. Further, the implementation of the environmental mitigation measures, proper monitoring and compliance of the environmental standards/legislations will make the Project environmentally more sustainable.

PA-SKP-15 (Lahore Muridke Road)
Proposed Intra City Roads for SITE- SKP-15(Lahore Muridke Road)

Based on the existing trends and keeping in view the future demands of the nearby areas the proposed SKP-15 has been proposed for residential use as detailed below:

<table>
<thead>
<tr>
<th>Current Population (2015)</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed Population (2035)</td>
<td>177800</td>
</tr>
<tr>
<td>Total Area of Site</td>
<td>4541 Acres</td>
</tr>
<tr>
<td>Area Proposed for Residential</td>
<td>3556 Acres</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Required Infrastructure/ Utilities (by 2035)</th>
<th>Estimated Per Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td></td>
</tr>
</tbody>
</table>
Estimated Number of Housing Units: 25400
Electricity (based on 30% demand factor): 38 MW
Natural Gas (based on 219 cubic meter/c/y): 144502 cubic m/day
Water (based on 300LPCD): 21 Cusecs
Wastewater Production: 16.8 Cusecs
Solid Waste Production (0.85kg/c/d): 204 Tons/day

Environmental Impacts Due To Proposed Amendments in PA-SKP-15 and 16 (Lahore Muridke Road):

- The growth rate of population, progressive migration of people from the nearby areas towards the area and the establishment of numerous industries has resulted in an increase in water demand 21 Cusecs for residential area. The continuous extraction of groundwater will have a negative impact on the groundwater aquifer which is already depleting at 2.5-3.0 feet per year.

- Estimated production of waste water from residential units till 2035 will be 16.8 Cusecs. The residential waste water have pollution load (COD-500, BOD-250 and TSS-300) which may deteriorate the surface water – River Ravi water quality.

- The vehicular traffic from residential area will generate CO, NOx, PM and CO2 emissions which may have a variety of health impacts to the commuters and persons living in residencies.

- Considering population of area by 2035, the total municipal solid waste will be generated 204 tons/day. Municipal solid waste produced from area if not managed properly, will cause aesthetic problems and also produce odor along with the spread of many diseases. Similarly, medical waste produced from medical facilities etc. if not properly managed and disposed, it can result in injury by contaminated sharp, cutting material and infection with Hepatitis B, C, and HIV etc.

- Noise pollution will be generated from vehicles travelling in the residential area with noise level 60 to 70 dBA. Noise pollution may result in hearing related diseases and may cause effects on local biodiversity. Development...
of area leads towards increase in vehicles on roads. Which if not properly managed will result in wastage of time as well as air and noise pollution.

- The main negative impact expected from the development in this area is the loss of 3556 acres of agricultural land. The other negative impacts are loss of biodiversity, habitat loss and fragmentation. The indirect impact include loss of livelihood to the peoples belongs to the agriculture activities.

- The LDA will require land acquisition for widening and improvement of the existing roads, development of bypass roads for various existing town/villages etc, development of inter town and villages roads, development of new main roads, connecting roads, accessibility roads, sewerage systems including pumping stations, disposal stations, treatment plants, development of recreational areas, public utilities, buildings, administration buildings, toll stations and weighing stations.

- As the prime purpose of the amendments in master plan is to systemize the unplanned growth, so implementation of this plan at Proposed sites will improve the socio-cultural environment. Planned development will ensure the cost effective provision of public utilities from government. It will improve the esthetic beauty of the area and make certain the sustainable development of area.

Conclusion:

The existing areas are lacking basic amenities, infrastructure and being exploited by the land mafia as no rules and regulation are being followed. There are no proper system of sewerage and solid waste management.

If the proposed amendment area remains as such then the unplanned urban growth related with increase in population will result in miserable situation with high negative impact on environment and social settings of the area.

However, with the notification of the site under the amendment few impacts will be generated due to development of the area which mainly includes land acquisition, loss of 3556 acres of agriculture land, generation of 16.8 cusecs of wastewater from
residential area and 204 tons/day of solid waste up till 2035 for which the mitigation for these impacts have been proposed in the next section.

Based on the Environmental Analysis of the proposed site, it can be concluded that the proposed site is feasible for future development. Further, the implementation of the environmental mitigation measures, proper monitoring and compliance of the environmental standards/legislations will make the Project environmentally more sustainable.

Note: For Site 16 the existing buildup of Lahore Muridke Road has been proposed as residential

PA-SKP-18 (ShiekhpuraSargoda Road- Dhanrpura)
Based on the existing development this area has been proposed for the development of oil deports as detailed below:

Current Population (2015)
108864

Proposed Population (2035)
240838

Total Area of Site
1877 Acres

Built-up
150 acres

Area Proposed for - Oil Depot
1727 Acres

This area has existing oil depots and proposed for special development zone which may include further increase in oil depot area

Environmental Impacts Due To Proposed Amendments in PA-SKP-18 (ShiekhpuraSargoda Road- Dhantpura):

- The oil spill and leakage may contaminate the ground water.
• The waste water will be produced from washing of oil tanks. The waste water contains high levels of oil and may have impact on surface water quality. The increase in oil on surface water may lead to decrease the quantity of DO which may have negative impact on aquatic life.

• The Vehicular traffic in the area will generate CO, NOx, PM and CO2 emissions which may have variety of health impacts to the commuters and persons living in residencies.

• The LDA will require land acquisition for widening and improvement of the existing roads, development of bypass roads for various existing town/villages etc, development of inter town and villages roads, development of new main roads, connecting roads, accessibility roads, sewerage systems including pumping stations, disposal stations, treatment plants, development of recreational areas, public utilities, buildings, administration buildings, toll stations and weighing stations.

• The main negative impact expected from the development in this area is the loss of 500 acres of agricultural land. The other negative impacts are loss of biodiversity, habitat loss and fragmentation. The indirect impact include loss of livelihood to the peoples belongs to the agriculture activities.

• It will improve the esthetic beauty of the area and make certain the sustainable development of area.

• As the prime purpose of the amendments in master plan is to systemize the unplanned growth, so implementation of this plan at Proposed sites will improve the socio-cultural environment. Planned development will ensure the cost effective provision of public utilities from government.

Conclusion:

The existing oil depot is not as per international standards without giving any due consideration to the Health and Safety aspect which present a highly risk area.
If the proposed amendment area remains as such then the development of other oil depots will be without the consideration of any international standards and any time a disaster may happen.

However, with designated development all the provision of the safety will be considered before the implementation of any new oil depots. However, a few impacts will be generated due to development of the area which mainly includes oil spillage with ground water contamination and loss of 7711 acres of agriculture land for which the mitigation for these impacts have been proposed in the next section.

After the Environmental Analysis of site, it can be concluded that the proposed site is feasible for future development. Further, the implementation of the environmental mitigation measures, proper monitoring and compliance of the environmental standards/legislations will make the Project environmentally more sustainable.

POTENTIAL ENVIRONMENTAL IMPACTS OF THE PROPOSED ROAD NETWORK FOR THE AMENDMENT IN THE MASTER PLAN OF LAHORE DIVISION

GENERAL

In order to ensure the smooth flow of traffic considering the future demands under the amendment of the Lahore Division Master Plan a comprehensive road network comprising upgradation and widening of the existing roads, provision of the bypasses to avoid the residential bottlenecks and a few new roads has been proposed. Map I and II shows the existing road network joining the 47 proposed residential, commercial and industrial sites with the Lahore division.

In order to ensure that the communication, transportation requirements are fulfilled and comprehensive road network which include the upgradation of the existing roads, widening of the roads, provision of the bypasses where currently bottlenecks are identified and few new roads has been proposed. Map-III and IV shows the proposed road network for the Lahore division.
It is imperative that all potential impacts related to the proposed road network is identified at an early stage (planning stage) and their remedial policy level and project level mitigation measures are incorporated into the design and policy.

Based on the available planning data, study of different aspects of the proposed road network with respect to the existing environmental conditions of the Project Area, it is assessed that the proposed road network is likely to have different types of impacts on the environment. A checklist of the potential environmental impacts was prepared for the proposed road network, which are presented in Table below:

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Environmental Component</th>
<th>Environmental Issues</th>
<th>Probable Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PHYSICAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Land</td>
<td>i) Land Acquisition</td>
<td>Adverse</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ii) Dismantling of few Structures</td>
<td>"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iii) Relocation of Existing Utilities/Structures</td>
<td>"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iv) Change of Landuse</td>
<td>"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>v) Induced Road side Development</td>
<td>"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>vi) Soil Erosion and Landslide</td>
<td>"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>vii) Disposal of Spoil</td>
<td>"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>viii) Landscape/Aesthetic Value</td>
<td>"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ix) Increase in the land values</td>
<td>Positive</td>
</tr>
<tr>
<td></td>
<td>Water</td>
<td>i) Impacts on Surface Water Bodies</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Erosion and Sedimentation</td>
<td>Negative</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Contamination from Accidental Spillage</td>
<td>"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ii) Flooding</td>
<td>"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iii) Ground Water</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td>Air</td>
<td>i) Ambient Air</td>
<td>Negative</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ii) Noise</td>
<td>"</td>
</tr>
</tbody>
</table>
Based on the assessment of proposed network and the existing conditions of the Project Area, following environmental impacts on physical, ecological and socio-cultural resources have been identified which must be properly mitigated during different stages of the project.
a) **Land Acquisition**

Widening of the existing roads, provision of the bypass roads, parking especially at congested places and provision of the few new proposed roads will involves land acquisition of the private land.

b) **Dismantling of Structures**

There are only few housing structures, shops, deras, small huts, storage go downs etc. are located within the ROW of the proposed road network which will require to be removed permanently. Similarly, some moveable assets will be affected temporarily during the transition period of the construction/upgradation/widening of these roads. Therefore, the proposed road network needs to be implemented and planned very carefully for minimal disturbances or removal of the existing structures.

c) **Relocation of Existing Utilities**

Disruption of existing utilities like water supply, electricity and telephone may be caused during the construction stage of the project. Although such type of disruptions shall not be too much and for short time only, yet it may pose negative impact on the every day life of the people.

d) **Change of Landuse**

No major negative impact is envisaged due to proposed network, since already the road network is proposed is based on the existing roads only the widening, provision of the bypass and a few new roads deemed necessary has been proposed. Some of the areas to be taken for contractor’s camps and material storage may also experience change of landuse for which mitigation measures will be required.

e) **Induced Roadside Development**

The proposed Project is expected to result in improvement in transportation facilities in the Area due to improved road condition, which may result in some induced roadside commercial, industrial and/ or residential development. No negative impacts are envisaged due to such developments if these developments are ensured to remain well within the applicable rules and outside the right of way (R.O.W) of the roads. In fact, it may increase the economic activities in the Project Area resulting in enhancing the socio economic conditions of the local residents.
f) Soil Erosion

Soil erosion issue can be potential environmental due to the construction of the proposed new roads and bypasses. The intensity of this impact will vary at different locations depending on the type of soil / rock, drainage and hydrological pattern of the concerned area. Sediment transport to natural drainage flowing may increase considerably if not properly mitigated of. This phenomenon may pose serious environmental impacts like water stagnation, slumps, slips and other mass movements in the road cuts. Safety of travellers and vehicles may always be at risk due to water accumulation during the rains if negative impacts if not addressed.

g) Seismic Impacts

All the seismic provision for the building code of Pakistan, 2007 must be strictly followed as it has been observed that the seismic intensity has increases during the past five years.

h) Disposal of Spoil

Disposal of spoil / surplus material may be another issue likely to cause negative environmental impacts, if not properly mitigated during construction of the road network. Negative impacts may be caused on the receiving lands due to improper disposal of spoil including silt runoff, change of land use, sedimentation of receiving water bodies and loss of aesthetic values.

i) Flooding

There is a great potential of rainfall in the whole division due to the climate change and the storm water flow variation is tremendous during monsoons. Heavy and intensive precipitation in these areas often results in quick and high velocity flows. Properly designed drains along the road and cross drainage structures on the highway including adequate design, operation and maintenance will be required to minimize serious negative impacts during construction and operation stages of the Project.
j) **Impacts on Soil and Water Bodies**

There is a probability that spillage of various types of oils and lubricants used during the construction phase of these proposed widening of the existing roads, bypasses the surface water bodies specially River Ravi and other natural drains along with the highly fertile agriculture land may be affected.

Proper mitigation measures shall be necessary during construction and operation stages of the road network.

k) **Air Pollution**

The existing air quality along the proposed road network route is reported to be free of any source of environmental pollution as the present traffic loads on these roads are not so high. However, keeping in view the magnitude of proposed residential, commercial and industrial activities an exponential increase in the traffic volume is anticipated which will deteriorate the air quality. This may pose some negative impacts on the air quality of the Project Area if not properly mitigated.

Emissions of various gases were calculated using the present and projected traffic volume and the speeds under with and without project condition over the entire design horizon. Table 5.2 shows the present and projected traffic volumes in different sections of the roads while Table 5.3a and 5.3b depict average operating speeds/level of service under with and without project conditions. Table 5.4a to 5.4b presents the results of the calculations for different type of emissions for one-kilometer distance travelled by the vehicles.

The results depict that considerable reduction in CO and HC emissions is anticipated under with-project conditions due to improvement of speeds and smooth flow of traffic. The NEQS do not provide any standards for ambient air quality. The World Bank’s Pollution Prevention and Abatement Handbook for General Manufacturing provides following Guidelines for Ambient Air Conditions at Property Boundary.
I) Noise

The noise level of heavy road construction equipment is normally high, but is limited to the vicinity of the road only. Construction activities for the proposed road network is likely to cause significant increase in noise levels due to the movement and operation of excavators, compactors, rollers, concrete mixers, welding plants, cranes, vibrators and due to haulage of material and machinery. Generators (to provide on-site electricity) will also be a source of noise in the area. The major source of noise pollution for relocation of KKH will be the rock blasting operations.

The General Services Administration Construction Noise Specifications as adopted under the provisions of the US-EPA Noise Control Act, 1972 specify the noise emission standard for various machinery and equipment, which is presented below.

TABLE GENERAL NOISE LEVELS OF VARIOUS MACHINERY AND EQUIPMENT

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Equipment</th>
<th>Noise-Level in dB (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Earth Moving Machinery</td>
<td>75-85</td>
</tr>
<tr>
<td>2</td>
<td>Material Handling</td>
<td>75</td>
</tr>
<tr>
<td>3</td>
<td>Stationery Equipment</td>
<td>75</td>
</tr>
<tr>
<td>4</td>
<td>Tools, Hammers and Drivers</td>
<td>80-95</td>
</tr>
</tbody>
</table>

The damage risk criteria for hearing as suggested by the Occupational Safety and Health Administration (OSHA) is described in Table. These levels were established to reduce the hearing loss of the people working on the projects.
TABLE DAMAGE RISK CRITERIA FOR HEARING LOSS

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Maximum Allowable Duration per day in Hours</th>
<th>Noise-Level in dB (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td>90</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>92</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>95</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>97</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>1 ½</td>
<td>102</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>105</td>
</tr>
<tr>
<td>8</td>
<td>½</td>
<td>110</td>
</tr>
<tr>
<td>9</td>
<td>¼ or less</td>
<td>115 (Max.)</td>
</tr>
</tbody>
</table>

The maximum limit of noise levels are given in the Table 5.7.

TABLE 5.7 MAXIMUM LIMIT OF NOISE LEVEL

<table>
<thead>
<tr>
<th>Noise Level Db (A)</th>
<th>Situation</th>
</tr>
</thead>
<tbody>
<tr>
<td>194</td>
<td>Lung damage</td>
</tr>
<tr>
<td>180</td>
<td>Ear drum rupture</td>
</tr>
<tr>
<td>150</td>
<td>Absolute limit with ears protected</td>
</tr>
<tr>
<td>150</td>
<td>Maximum of instantaneous noise</td>
</tr>
<tr>
<td>135</td>
<td>Absolute maximum with ears unprotected.</td>
</tr>
<tr>
<td>100</td>
<td>Prolonged noise causing permanent damage</td>
</tr>
<tr>
<td>90</td>
<td>Factory work for an 8-hour day. 5 days a week</td>
</tr>
</tbody>
</table>
Ear protection should be worn
Noise on building or construction sites
Road traffic near residential areas

As there are residential areas along the road, therefore for those locations special precautionary measures shall be required to mitigate the noise impacts on the inhabitants. The NEQS also provide standards for ambient noise levels. The World Bank’s Pollution Prevention and Abatement Guidelines provide that noise abatement measures should achieve the following levels, measured at noise receptors located outside the project property boundary, with a maximum increase in the existing ambient level of L_{eq} 3 dB (A) where the existing ambient level exceeds L_{eq} 45 dB (A).

<table>
<thead>
<tr>
<th>Receptor</th>
<th>Maximum allowable L_{eq} (hourly), in dB(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential; Institutional; educational</td>
<td>Daytime</td>
</tr>
<tr>
<td></td>
<td>07:00-22:00</td>
</tr>
<tr>
<td>55</td>
<td>45</td>
</tr>
<tr>
<td>Industrial/commercial</td>
<td>70</td>
</tr>
</tbody>
</table>

85	Ear protection should be worn
80	Noise on building or construction sites
70	Road traffic near residential areas
ECOLOGICAL RESOURCES

Loss of Vegetation and Wild Life

No major negative impacts are anticipated on wild life due to the proposed road network construction however loss of vegetation, trees, agriculture areas at various locations identified in the landuse maps is a major impact. Loss of this vegetation/trees/crops is undesirable phenomenon and is considered to be a potentially significant negative impact. Mitigation measures shall be required to reduce the negative impacts on the environment due to loss of this vegetation.

SOCIAL AND CULTURAL RESOURCES

a) Relocation/Resettlement

A review of proposed road network reveals that it will involve dislocation of few people. Out of that some people will be displaced permanently whose houses will fall within the ROW and some people will be displaced temporarily due to likely fall of work area during construction activities. Proper mitigation measures shall be needed through a “Resettlement Action Plan” to minimize the impact.

b) Disturbance to People

Disturbance to locals may be caused due to dust, noise and vibration generated from construction operations. Due to movements of heavy machinery during the construction phase, daily activities of the people of nearby localities as well as of the passengers may be disturbed, which would need to be addressed. Proper placement of the contractor’s crew and construction camps is also imperative to avoid inconvenience to the public.

c) Inconvenience to Existing Traffic

Since the proposed road network utilizes the existing roads network in the area traffic may be disturbed on the existing road due to various construction activities. It is very important to ensure safety of people and the traffic and to manage the traffic movements in coordination with construction activities of the new road to avoid serious negative impacts.
d) Safety of Residents, Pedestrians and Animals

The proposed road network may adversely affect the residents, pedestrians and animals living along the rural to semi-rural areas if proper arrangements are not made for their safety. This factor needs special consideration during design, construction and operation stage of the Project. Proper mitigation measures shall be required to minimize negative impacts on the local residents, pedestrians and animals.

e) Health and Safety of Workers and Public

The proposed construction activities are of such nature, which can impose severe impacts on health & safety of the workers and the public. The rock cutting operations and heating of the cut back and bitumen works pose serious health and safety risks for the workers and the public. Proper mitigation measures shall be required to avoid health and safety related negative impacts of the proposed Project.

f) Socio-Economic Impacts

The residents of the Area showed their concern for safe and convenient passage across the road. Due consideration should be given at the design stage of the Project to facilitate the pedestrians in the residential areas. During construction stage, the livelihoods of some of the permanent and temporary affected persons may be lost if not restored/compensated properly.

In contrary, the construction activities for project will generate jobs for the local people. In addition indirect economic activities will increase i.e., hotels, shops, petrol pumps may come up along the highway during the operation stage.

A large number of non-locals will come for working on various jobs; therefore there is a possibility of social or cultural conflict. It is recommended that the services of local skilled or unskilled local labour may be utilized as far as possible.

The influx of non-locals may however have some positive impacts also, including the possibility of bringing awareness and cultural uplift of the Project Area.
Business and trade activity will increase significantly providing economic benefits to the people living in the area. The improvement in existing transportation facilities will boost tourism in the area.

The Project may impart different skills to the local residents and training on the Project will help them in their future life and hence human resource development will take place for future progress of the area.

Level of basic necessities like health, education and transportation are expected to be enhanced benefiting the people residing in the area.

Overall socio-economic benefits of the Project being more than the negative impacts will result in raising their standard of living and improved socio-economic conditions, and hence alleviation of poverty in the Project Area.

Cumulative Impacts

The cumulative impacts of all the sites are attached as Annex VII

6.6. Mitigations for Site Analysis Environmental Impacts

For Residential and Industrial Areas

- Industries should install air pollution control devices and strictly follow the NEQS. The enforcement agencies like EPA should take action against those industries which do not follow NEQS.

- Green Buffer zone of at least 200 meters should be provided in between industrial and residential areas.

- The industry should take measures to reduce carbon foot print as continuously improvement program

- LDA through WASA should take measures to control demand by reducing per capita water availability by educating households to use water more wisely.
• For long-term sustainability of drinking water supplies, the possibility of supplementing groundwater supplies with surface water supplies should be explored, wherever possible.

• New housing societies should also be made aware of the problem and their groundwater extraction quota should be fixed based on specified per capita demand

• To increase recharge to groundwater, rainwater harvesting should be encouraged in all new and old housing schemes and in areas proposed for the residential and industrial use. For this purpose, special recharge zones may be developed to facilitate groundwater recharge.

• In order to promote the culture of water conservation, a metering system should be introduced to charge water on a volumetric basis

• Industries should have been work to recycle the waste water. The policy should be introduced for industries to at least 30% of its waste water should be recycled.

• Every house in the societies should have its own septic tank to retain the pollution load.

• According to Punjab Environmental Protection Act; Treatment of wastewater from industrial units is the responsibility of industries. Punjab Environmental Protection Agency will enforce all the clauses of protection act deals with the wastewater.

• Industries should have installed waste water treatment plant, in order to treat the waste water and bring in NEQS. With that option of recycling of water in industry should be explored.

• Industries can monitor their water resources and continue to develop strategies to maintain their water reserves and adopt management practices geared towards creating efficiency per unit of production.

• Industries can invest in treating wastewater at source and reuse it. This will build up their reputation in society and help in avoiding future water risks.
Zoning of industries concept should be introduce such as to promote water conservation in the industrial sector, attention must be given to water intensive sectors.

Currently in the area of Lahore district; LWMC is main responsible organization for management of solid waste. Its jurisdiction needs to be increased in adjoining area up to notified level and its coordination with local departments needs enhanced.

The LWMC model should be replicate in district government Nankana, Kasur and Shiekhpura in order to proper management of solid waste.

For industries, the waste should be managed in accordance with waste management hierarchy. The solid waste management system should be developed by industries. For hazardous waste, it should be separately placed and disposed in accordance with Punjab Environmental Act with approval from EPA Punjab.

Care must be taken as not to mix medical waste with municipal waste.

Medical waste need to be segregated and collected in house in accordance with the Hospital Waste Management Rules, 2005. The collected waste should be given to LWMC for safe disposal in Landfill site after autoclaving.

Currently main disposal of hospital waste is through incineration which should be stopped as incineration is now least preferred technology for hospital waste management having problem of toxic air emissions.

Transportation policy should be developed to discourage the operation of outdated vehicles having higher noise level on roads.

Provision of buffer zones around the roads and industrial areas can minimize the effect of noise pollution and increase esthetic beauty.

The land acquisition should be done in accordance with the land acquisition act 1897 and its amendments. Compensation against land, structure, disturbance allowance should be provided to the affecties as per market price.
The detail ecological impacts and mitigation have been presented in ecological study reports, however the negative impacts on ecological environmental due to urban development in the area can be mitigated by:

- Minimizing biodiversity loss by developing Green Infrastructure
- Restoration of native vegetation on roadside verges. This will also improve the connectivity of ecological system.
- Identification and conservation of areas important for priority animal species
- Planning for nature conservation through policy framework for green infrastructure.
- Urban agriculture and kitchen gardening.
- For new societies and developments; LDA By Rules should be enforced to avoid the impacts.

For Industrial Areas

- Industries should install air pollution control devices and strictly follow the NEQS. The enforcement agencies like EPA should take action against those industries which do not follow NEQS.
- Generators in industries should be maintained properly and properly tuned up in respect of air to fuel ratio in order to have these pollutants within the NEQS limit.
- The industry should take measures to reduce carbon foot print as continuously improvement program
- For long-term sustainability of drinking water supplies, the possibility of supplementing groundwater supplies with surface water supplies should be explored, wherever possible.
- To increase recharge to groundwater, rainwater harvesting should be encouraged in industrial sector. For this purpose, roof top rain water should be collected in underground tanks and then can be reused for washing,
cooling and gardening purposes etc. For courtyards and gardens the harvested rain water can be used to recharge the ground water.

- In order to promote the culture of water conservation, a metering system should be introduced for industries to charge water on a volumetric basis.

- Industries should have been work to recycle the waste water. The policy should be introduced for industries to at least 30% of its waste water should be recycled.

- According to Punjab Environmental Protection Act; Treatment of wastewater from industrial units is the responsibility of industries. Punjab Environmental Protection Agency will enforce all the clauses of protection act deals with the wastewater.

- Industries should have installed waste water treatment plant, in order to treat the waste water and bring in NEQS. With that option of recycling of water in industry should be explored.

- Industries can monitor their water resources and continue to develop strategies to maintain their water reserves and adopt management practices geared towards creating efficiency per unit of production.

- Industries can invest in treating wastewater at source and reuse it. This will build up their reputation in society and help in avoiding future water risks.

- Zoning of industries concept should be introduce such as to promote water conservation in the industrial sector, attention must be given to water intensive sectors.

- For industries, the waste should be managed in accordance with waste management hierarchy. The solid waste management system should be developed by industries. For hazardous waste, it should be separately placed and disposed in accordance with Punjab Environmental Act with approval from EPA Punjab.

- Provision of buffer zones around the roads and industrial areas can minimize the effect of noise pollution and increase esthetic beauty.
Chapter 6: SCREENING OF POTENTIAL ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

- Proper, adequate and timely maintenance of equipment installed in industries through lubrication, repair and replacement of parts will go a long way to keep the noise levels within the prescribed limits NEQS

- Providing the industrial workers with suitable hearing protection like ear cap, or earmuffs and training them in their use;

- Sound barriers can be placed for the enclosure of machinery, enclosure of worker and outside environment.

- The land acquisition should be done in accordance with the land acquisition act 1897 and its amendments. Compensation against land, structure, disturbance allowance should be provided to the affecties as per market price.

For Residential Areas

- An awareness program should be organized for owners of the vehicles to regularly tune-up vehicles’ engines and ensure proper maintenance. Vehicles standard must be enforced by EPA in order to minimize the air pollution

- LDA through WASA should take measures to control demand by reducing per capita water availability by educating households to use water more wisely.

- For long-term sustainability of drinking water supplies, the possibility of supplementing groundwater supplies with surface water supplies should be explored, wherever possible.

- New housing societies should also be made aware of the problem and their groundwater extraction quota should be fixed based on specified per capita demand

- To increase recharge to groundwater, rainwater harvesting should be encouraged in all new and old housing schemes and in areas proposed for the residential and industrial use. Rain water harvesting wells should be developed along the roads, Parks and at house levels and ground water wells should be developed in high rise buildings
Chapter 6: SCREENING OF POTENTIAL ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

- In order to promote the culture of water conservation, a metering system should be introduced to charge water on a volumetric basis.

- Every house in the societies should have its own septic tank to retain the pollution load.

- Currently in the area of Lahore district; LWMC is main responsible organization for management of solid waste. Its jurisdiction needs to be increased in adjoining area up to notified level and its coordination with local departments needs enhanced.

- The LWMC model should be replicate in district government Nankana, Kasur and Shiekhpura in order to proper management of solid waste.

- Care must be taken as not to mix medical waste with municipal waste.

- Medical waste need to be segregated and collected in house in accordance with the Hospital Waste Management Rules, 2005. The collected waste should be given to LWMC for safe disposal in Landfill site after autoclaving.

- Currently main disposal of hospital waste is through incineration which should be stopped as incineration is now least preferred technology for hospital waste management having problem of toxic air emissions.

- Transportation policy should be developed to discourage the operation of outdated vehicles having higher noise level on roads.

- Provision of buffer zones around the roads and industrial areas can minimize the effect of noise pollution and increase esthetic beauty.

- The land acquisition should be done in accordance with the land acquisition act 1897 and its amendments. Compensation against land, structure, disturbance allowance should be provided to the affecties as per market price.

- The detail ecological impacts and mitigation have been presented in ecological study reports, however the negative impacts on ecological environmental due to urban development in the area can be mitigated by:

 ➢ Minimizing biodiversity loss by developing Green Infrastructure
- Restoration of native vegetation on roadside verges. This will also improve the connectivity of ecological system.
- Identification and conservation of areas important for priority animal species.
- Planning for nature conservation through policy framework for green infrastructure.
- Urban agriculture and kitchen gardening.
- For new societies and developments; LDA By Rules should be enforced to avoid the impacts.

6.7. Environmental Impacts during Planning Stage and Mitigation Measures

Following is the description of the potentially significant impacts envisaged during the planning stage which includes all the activities before the implementation stage of the project:

6.7.1. Groundwater Resources

- Good quality potable water is a fundamental requirement for human health and survival. Lahore and adjoin areas forming is the second largest city of Pakistan. Its population is increasing at a rapid rate of 3.2 per cent per year. In 1901 the population of Lahore was 0.203 million which, by 1990, has increased to about 5 million. At present, the population is near more than 10 million.
- Lahore district and city due to fast growth of population, poor town-planning (non-compliance of laws and regulations as well as IMPL) and industrialization are causing problems in supplying public services. Supply and sustainability of clean water stands among the most crucial problems related to proposed Master Planning.
- The sole supply of water to the Lahore Division depends upon the abstraction of groundwater. Potential rapid growth rate of population, progressive migration of people from the nearby areas towards the city and the establishment of numerous industries has resulted in rapid increase in water demand.
- The number of wells and, hence, the groundwater abstraction will be on increasing in accordance with the growth of population, housing schemes and industrial zones.
- On the other hand, proposed urbanization and industrialization has the tendency to reduce the ground water recharge, as a significant part of the land has become impermeable.

- With the increasing number of tubewells, the groundwater level, which used to exist at about minimum encountered 4.5 m deep has already started declining rapidly. A decline of 15.5 meters in water-table during 1960 to 1991 was noticed in Lahore City (Alam, 1996). At present, the water-table in the central area of the city has gone down to 28 m from the surface level (WASA, 1999). In accordance with recent study the depletion rate of ground water for Lahore district is about 2.5-3.0 feet per year.

- The existence of saline groundwater in the nearby areas of Raiwind and Kasur, in the south of Lahore, is a potential threat to the aquifer under the Lahore city. There is a danger of deterioration of the aquifer water-quality if the saline water finds a path to reach the city area due to the potential increase in the abstraction by the proposed residential and industrial areas.

- The flushing out of this saline water, if it once enters the aquifer, would then be nearly impossible.

- Development of water supplies to serve the local needs is particularly challenging in adjoining areas of the Lahore such as Nankana, Kasur, Shiekhupura areas where natural conditions potential to cater the anticipated future demands of the amount of groundwater resources available and aquifers water resource development. As such, these areas should be identified for potential project sponsors.

6.7.2. Surface Water Resources and Quality

- Currently the entire wastewater from Lahore District is collected through a network of 14 main drains and discharged into the River Ravi without any treatment. The wastewater from Nankana, Shiekhupura and part of Kasur districts are also finally discharged in to the River Ravi. The waste water from southern part of Kasur district is discharge in to River Sutlej. This wastewater has been discharge into the rivers without any treatment and contains category of industrial, commercial and residential wastewater. Due to non-availability of fresh water in River Ravi, the river is converted in to sewage.

- The high pollution load in river Ravi has created overall negative impact on ground water as well as on agriculture which is being done on adjacent to the river and where river water is directly used for irrigation. Already some studies have been found high values of heavy metals in crops that have been grown in adjacent to the river Ravi.
With the potential to increase in the residential areas, housing schemes and industrial areas in districts of Lahore division the pollution level and quantities of wastewater is likely to increase many folds which may have negative impact on agriculture, ground water and human health.

6.7.3. Flood

- The project sites include two rivers i.e. Ravi and Sutlej and number of canals and drains so there is chance of flood hazard to occur at the project sites. According to the PDMA-DRP, the River Ravi belongs to the category B flooding (medium Level Flood). Two categories of flood can occur in the project area i.e. urban and riverine. The recent flood noted in River Ravi is at Shahdara Gauging Station is 250,000 cusecs and considered as medium flood level. This is the highest flood level noted in River Ravi after year 2000 as construction of Thein Dam on Indian side greatly reduces the flows in River Ravi while the highest flood that observed in River Ravi is in 1988 which was around 586,000 cusecs.
- In Sutlej RiverMost of the flow is yielded by heavy monsoon rains. The maximum recorded flood discharge occurred in 1955, when the river flowed at nearly 600,000 cubic feet (17,000 cubic metres) per second. The risk of floods has drastically reduced since construction of series of dams on Sutlej River on Indian side.
- Flood is considered as most drastic and re-occurring hazards in Pakistan. Roughly 1.84 million people across Pakistan have been affected by floods triggered by heavy monsoon rains. At least 346 people have been killed and 620 others have been injured in flood-related incidents, according to the latest figures released by the National Disaster Management Authority (NDMA).
- The most recent flood was occurred in current year of 2014 and considered as one of the biggest flood in the history of Pakistan. According to the National Disaster Management Authority (NDMA) almost 312 people have died, with 2,275,000 affected and nearly 1.7 million acres (687,965 hectares) of crops lost due to this recent flood. The most affected were in Punjab Province and declared a state of emergency.
- Following settlements of project area have a potential risk of flooding in river Ravi for 100 years return period in accordance with short term hydrological study attached as Appendix III. The settlements include Bhai Pheru, Bucheki, Mandi Faizabad, Mor Khunda, and Syed Wala can subjected to flooding.
- The settlement Ferozwala is under potential threat of flooding due to Deg Nallah
- The settlement Muredke is under potential threat of flooding due to Nikki Deg Drian
- The map of flood prone areas are attached as Annex III
• The short term hydrological study which shows each river flow and each project area analysis in accordance with flooding is attached as Appendix III

6.7.4. Climate Change

Pakistan is rated among the top 10 most vulnerable countries to climate change. The government estimates that Pakistan has, collectively, suffered losses to the tune of $20 billion due to the adverse and increasing effects of climate change. “Pakistan is among the countries which are most vulnerable to climate change, and has a very low technical and financial capacity to adapt to its adverse impacts in accordance with one report submitted in November 2015 in National Assembly.

The major concerns of climate change in reference to our project site areas are given as under-;

• Increased variability of Monsoon;
• Projected recession of Glaciers threatening IRS Flows;
• Increased risks of Extreme Events (floods, droughts, cyclones, extreme high / low temperatures etc.);
• Severe water- and heat-stressed conditions in arid and semi-arid regions leading to reduced agricultural productivity;
• Increase in Deforestation; Loss of Biodiversity;
• Health Risks

The major extreme climatic events in reference to our project areas are given as under-:

• Isolated hailstorm in and around urban area of Lahore in 2011
• Urban Flooding in Lahore due to extreme rainfall of about 46.7 inches in 2013
• Localized Cloud Burst rains causing urban flooding in Lahore (1996)
• Large scale flooding in 1988 and 1992 in Lahore
• History’s worst drought during 1999 – 2002 in Lahore
• Intense heat waves during 2003, 2005, 2007 and 2010 (53.7 °C) in Lahore

The climate change poses the serious threat in project areas if not mitigated or without an adaptive capability for the extreme climatic events. Further detail Climate Change Vulnerability Assessment of Lahore Division is required for detail analysis of climate change with mitigation and adaptive strategies.
6.7.5. **Land Resources**

The LDA will require land acquisition for:

- Widening and improvement of the existing roads
- Development of bypass roads for various existing town/villages etc.
- Development of inter town and villages roads,
- Development of new main roads, connecting roads, accessibility roads,
- Sewerage systems including pumping stations, disposal stations, treatment plants.
- Development of recreational areas, public utilities, buildings, administration buildings, toll stations, weighing stations

6.7.6. **High Voltage Transmission Lines**

The high voltage transmissions line are passing and planned to be passed form some of the project areas. These transmissions line if not been buffered have variety of health impacts on human. The short term health impacts include Headaches, Fatigue, Anxiety, Insomnia, Prickling and/or burning skin, Rashes and Muscle pain. The long term health impacts include risk of damaging DNA, risk of cancer, risk of leukemia, risk of neurodegenerative disease and risk of miscarria.

6.7.7. **Transportation**

Today big Cities mainly depend on transport system for their economic survival and socio-environmental sustainability and the transport system has a direct impact on all sectors of an economy. The impacts of ill-planned transport system on human environment include congestion, more energy consumption, pollution, traffic crashes, wastes time, delay, decreases productivity and imposes costs on society. There has been a major growth of traffic volume in Lahore over the past two decades due to increase in urban population with a large number of vehicle owners and citizens who transact businesses from one part of the city to another. At present many infrastructure facilities such as under passes, wide roads, bridges, signal free corridor etc. have been made in Lahore but increasing traffic volume rapidly overburden these facilities at present and vigorously worsen in future. Due to these factors there will be worst position if long-term planning of transportation in master
plan has not been done. The major impact would be seen on our economy if high efficiency transport system will not be designed for Lahore division.

6.7.8. Solid Waste

Solid waste generation rate on average in Lahore City is approximately 0.85 kg per capita per day. Considering 6.9 Million population of projected areas of Lahore Division, the total municipal solid waste will be generated 20,000 tons/day. It is hard to estimate the medical waste because the number and capacity of hospitals have not been assessed. Municipal solid waste produced from Lahore division if not managed properly, will cause aesthetic problems and also produce odor along with the spread of many diseases. Similarly, medical waste produced from medical facilities etc. if not properly managed and disposed, it can result in injury by contaminated sharp material and infection with Hepatitis B, C, and HIV etc.

At present proper solid waste management and disposal system exists in Lahore district that is done by LWMC. A proper management system is working day and night in the city which collects solid waste from all areas and disposes it off at Land fill sites marked by the government. Apart from that many energy projects like waste to energy, bio gas production from organic waste, Compost projects and landfill gas electricity from LWMC are in progress

6.8. Mitigation Measures during Planning Stage

6.8.1. Ground Water

- LDA through WASA should take measures to control demand by reducing per capita water availability by educating households to use water more wisely.
- For long-term sustainability of drinking water supplies, the possibility of supplementing groundwater supplies with surface water supplies should be explored, wherever possible. For Lahore division, provision of surface water supply from the River Ravi or BRBD, UCC, QB Link etc. canal system may be considered after addressing quality concerns.
- New housing societies should also be made aware of the problem and their groundwater extraction quota should be fixed based on specified per capita demand.
- New housings and business commercial units should use water efficiency equipment’s. This can be achieved through incentive programs to
homeowners and businesses to encourage replacement of plumbing fixtures and appliances with water-efficient models.

- Use high efficiency irrigation for agriculture use such as use drip irrigation instead of flood irrigation

- To increase recharge to groundwater, rainwater harvesting should be encouraged in all new and old housing schemes and in areas proposed for the residential and industrial use. For this purpose, special recharge zones may be developed to facilitate groundwater recharge. While doing so rights of downstream water users must be protected. In this regard, after considering the provision of IRSA use of Sutlej river water can be considered.

- In order to promote the culture of water conservation, a metering system should be introduced to charge water on a volumetric basis. This will help in reducing water use, in the same way as is being done for electricity, gas and other utilities.

- Water should be treated as an economic good and its exploitation rights be given through a proper permit system and compatible prices especially to the industrial sector. At the same time, existing environmental laws need to be implemented seriously.

- An integrated water resource management approach should be adopted by involving all stakeholders for the protection of water quality. The linkage between research and development needs to be strengthened.

- The following actions may help in the management and mitigation of water-related industrial risks in the context of Master Plan:

 - Companies need to be conscious of their water footprints (i.e. water use and wastewater discharge) throughout their entire value chain, including suppliers and product use.

 - Companies might assess their physical, reputational and regulatory risks and seek to align the evaluation with the company’s energy and climate risk assessment.

 - Engage key stakeholders (e.g. communities, NGOs, government bodies, suppliers and employees) as part of risk assessment, long-term planning and implementation activities.
Industries can monitor their water resources and continue to develop strategies to maintain their water reserves and adopt management practices geared towards creating efficiency per unit of production. • Industries can invest in treating wastewater at source and reuse it. This will build up their reputation in society and help in avoiding future water risks.

- Zoning of industries concept should be introduce such as to promote water conservation in the industrial sector, attention must be given to water intensive sectors.

• It is therefore, imperative to assess the mechanism of groundwater-replenishment, pollution-levels and pollution-sources, for sustainable development and conservation of these resources as a part of this updated Master Plan of Lahore Division.

6.8.2. Surface Water Resource and Quality

Water quality challenges need to be addressed in an integrated manner and by adopting pollution prevention strategies by LDA along with other concerned agencies like EPA. Water pollution can be reduced by eliminating contaminants at source which is the most effective way to protect water quality. The prevention of pollution at source is a cost effective solution as less money is required on waste handling, storage, treatment, remediation, and regulatory monitoring. Industrial units need to recycle wastewater generated from one process into other processes if it satisfies water quality standards. Water quality solutions include:

- Industries have to install wastewater treatment plant at source and should discharge the water that meets the NEQS. If possible the water should be recycled in to other processes or can be used for flushing and washing.
- Strict compliance is needed from enforcement agency like EPA on wastewater effluent NEQS from industries
- Wastewater treatment plant should have install on all the outfalls or drains that falls in to the river Ravi
- Recommendations of River Ravi Commission should be followed, which include development of constructed wetlands on drains before discharge into the river Ravi
• Regular monitoring of water quality. For this purpose, capacity of institutions (staff, laboratories, technologies, finances) should be enhanced.

• Water quality rules and regulations should be enforced in order to prevent the discharge of untreated effluents from industries and each municipality.

• A sustainable pollution control strategy needs to be devised in order to reduce wastewater volumes. This approach may include the segregation of wastewater streams, process modification techniques and recycling and reuse of wastewater.

• Proper education and awareness campaigns about the importance of water-quality need to be launched. Media and non-governmental organizations (NGOs) can play a vital role in this aspect.

• Intelligentsia/academia should be encouraged to conduct research on finding indigenous low-cost water treatment solutions for the industry.

6.8.3. Flood

Flood prone areas can be managed by following engineering solutions:-:

• Channelization and modification of river area from only where there is chance of flood hazard to occur.

• Develop large retention ponds in between river and flood prone identified areas. Water can be trapped in a retention pond and then released at a controlled discharge to prevent flooding.

• Dikes/Bund should be developed precise to the identified flood prone areas along the side of the rivers in order to prevent the flood.

6.8.4. Climate Change

• Climate change is a global phenomenon and none of the countries, whether big or small, can fight the battle alone. Therefore, international bodies such as Intergovernmental Panel on Climate Change (IPCC) have been established which regularly monitor various aspects related to climate change such as the patterns of carbon consumption, weather phenomena, climate-related extremes and regional and global effects. Additionally, a greater part of responsibility lies on the individual countries as well. Many countries have established indigenous bodies to assess the regional impacts of climate change and to devise effective strategies to mitigate. In Pakistan Climate
Change Policy and Framework have been developed in 2010 by Ministry of Climate Change. This policy and framework till yet not have been implemented and we have still face challenges of climate change. In order to effective mitigation and adaptation towards climate change, the Government has to implement the climate change policy and its framework at sectorial, institutional and departmental level on urgent basis.

- Detail Climate change vulnerability assessment study is needed for Lahore division
- The infrastructure should be designed in respect to the extreme climatic events in order to prevent urban flooding and urban heat island effect.

6.8.5. Land Resources

- The land acquisition should be done in accordance with the land acquisition act 1897 and its amendments. Compensation against land, structure, disturbance allowance should be provided to the affecties as per market price.

6.8.6. High Voltage Transmission Lines

The National Transmission and Dispatch Company (NTDC) should share the plan with Lahore Development Authority (LDA) for new transmission lines that are proposed to pass from the project area. The LDA will mark the area in master plan and adequate buffer zone at least 50 meters will be provided.

The LDA should also mark the area of already existing transmission lines that are passing from the project area and adequate buffer zone along the transmission line should be provided.

6.8.7. Transportation

The efficient transport system for Lahore Division should be designed and part of detail master plan. The traffic reduction and efficient transport strategy should be developed that mainly include:-

- The public transport should have been improved through inter and intra city mass transit that can be faster, cheaper, and more relaxing. It also helps minimize environmental damage caused by excessive car use.
- Private cars on road should be discouraged by increasing parking fee and vehicle tax on owners.
- Improve bicycle and pedestrian facilities and programs.
6.8.8. **Solid Waste**

- Currently in the City of Lahore LWMC is main responsible organization for management of solid waste. Its jurisdiction needs to be increased in adjoining area up to Lahore division Level and its coordination with local departments needs enhanced.

- Already landfill site present in Lahore at Mehmood Boti and one engineered landfill site is present at lakhodair. The LWMC has already suggested landfill sites and transfer stations in Lahore and Kasur region. The map of suggested landfill sites and transfer stations are attached as **Annex I**

- The Landfill Sites for other districts such as Nankana and Shiekhpura should also be studied and develop and included in the master plan.

- The municipal waste should be managed in accordance with waste management hierarchy which is currently lacking in society and waste management company.

- Care must be taken as not to mix medical waste with municipal waste.

- Medical waste need to be segregated and collected in house in accordance with the Hospital Waste Management Rules, 2005. The LWMC has already studied and plan out detail hospital waste management in Lahore district. The collected waste should be given to LWMC for safe disposal in Landfill site after autoclaving. Separate spaces have been given in Landfill for hospital waste. Currently main disposal of hospital waste is through incineration which should be stopped as incineration is now least preferred technology for hospital waste management having problem of toxic air emissions.

6.9. **Environmental Impacts during Development Stage and Mitigations**

6.9.1. **Physical Environment**

6.9.1.1. **Land Resources**

The contractors/LDA will require temporary acquisition of land for:

- Establishment of Contractor’s camp and other facilities.

- Disposal sites for safe disposal of surplus construction and excavated spoil material.
• It is obvious that rental/leasing of land for establishing of Contractor’s facilities will change the local land use pattern. However, the change in land use will be temporary.

• Potential conflicts may emerge with the landowners regarding the restoration of temporarily acquired areas for establishing Contractor’s facilities, particularly those for borrow and spoil disposal areas.

• Borrow pits and other landscape depressions, if left open, may prove hazardous to human beings, livestock and wildlife. Moreover rain water ponding in open pits can be a potential health hazard both for human beings and livestock due to the mosquito breeding and the pollution caused by stagnation of the water.

• Soil erosion may aggravate in the workshop areas as a result of improper runoff drawn from the equipment washing-yards and improper management of construction activities in hilly areas particularly in the vicinity of natural streams. Soil erosion may also occur during the excavation of for roads, sewerage and water supply lines in addition to quarry areas.

• The reduction in vegetative cover will reduce the binding capacity of the soil and increase its susceptibility to erosion by the force of rainfall. The loss of vegetative cover can increase propensity for landslides.

• Quarrying of rock from sandstone bed or picking of sand from the nullah beds for use in the construction of masonry or gabion walls may lead to destabilization of the slope and enhance land sliding.

• Scarified/scraped materials, if not disposed of properly, may contaminate the soils.

• Land may be contaminated by the spillage of chemicals like fuels, solvents, oils, paints and other construction chemicals and concrete. This normally happens when these materials are transported in open or loosely capped containers or by careless handling.
Chapter 6: SCREENING OF POTENTIAL ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

- The possible contamination of soil by oils and chemicals at campsites, workshop areas, and equipment washing-yards may limit the future use of land.

- Potential conflicts may emerge with landowners regarding the restoration of temporarily acquired areas for establishing contractor’s facilities, particularly those for borrow and spoil disposal areas.

6.9.1.2. Water Resources

- Surface water resources may be contaminated by the spillage of fuel and chemicals or by dumping of waste material and effluents generated by the kitchens and toilets at the construction campsites.

- Natural streams and canals may be contaminated with chemicals, oil, lubricants, detergents, etc. through runoff from the construction area, construction camp and equipment washing-yards.

- Cutting of shrubs and trees will also accelerate the soil erosion, which will cause the silting of natural streams.

- River, canals and nullahs may be contaminated with chemicals, oil, lubricants, detergents, etc. through runoff from the construction area, construction camp and equipment washing-yards.

- Sewage is generated from the construction camps. This may contaminate surface and groundwater, if not disposed of properly.

6.9.1.3. Solid and Liquid Waste

Solid and liquid waste will be generated from construction camps and from construction activities if not managed, it will pose threat to environment. If the waste is allowed to be disposed in rivers/nullahs as well as on open areas, it will not only cause litter and aesthetic issues but will also cause contamination. Establishment of construction camps will enhance the solid waste generation, which may cause contamination. Nullahs may also be affected by chocking.

6.9.1.4. Ambient Air Quality

- Due to the construction activities like excavation, clearing, leveling and compaction with the use of machinery like batching plants, excavators,
dump truck, Road Rollers, Graders, Haul Trucks, cranes and other transport vehicles etc. Most of these are using diesel engines that generate noise and exhaust emissions. The possibility of exhaust emissions increases when old vehicles/plants are utilized for the execution purposes. Generally, the above activity is generating particulate matter (PM$_{10}$), smoke, dust, CO and NOx in the ambient air, which is deteriorating the air quality and resulting in impacts on human health, fauna and flora. The movement of heavy machinery and vehicles on the dirt tracks is also causing fugitive dust emissions.

- An air pollution source for this project's activities are unpaved roads. Dust plumes behind vehicles moving along unpaved roads represent a typical occurrence, since as the vehicle travels over an unpaved road, the force of the wheels on the road surface causes pulverization of the surface material. Particles are lifted and dropped from the rolling wheels, and the road surface is exposed to strong air currents in turbulent shear with the surface. The turbulent wake (behind the vehicle) continues to act on the road surface after the vehicle has passed (U.S. EPA, 1975). As an approximation, fugitive dust (dust generated from unpaved roads is termed "fugitive dust" because it is not discharged into the atmosphere in a confined-flow stream) from unpaved roads can be considered to average about 75 lb per vehicle-mile of travel (Hesketh and Cross, 1981). This dust would be a problem for the surrounding communities and institutions. Fugitive dust is not expected to be a problem for national monument as the fugitive dust.

6.9.1.5. **Noise Level**

- During the implementation of the project a large amount of equipment and construction plant will be utilized for construction of the works. The equipment would include bulldozers, scrapers, excavators, compactors, trucks, large capacity dumpers, graders, heavy duty cranes, concrete batching plants and stone crushers. The operation and movement of such equipment will increase the noise and vibration in the Project Area. The impact will be significant when compared to the without project situation.

6.9.2. **Ecological Environment**

The potential impacts due to construction of proposed project activities on the aquatic and terrestrial ecology of the area are given in detail in Appendix I - Ecological Impact Study. However summary of main impacts are given as under:-
The main negative impacts expected from the implementation and construction of this Master plan are; loss of agricultural land, loss of biodiversity, habitat loss and fragmentation, water, noise, air and light pollutions and change in groundwater recharge capacity.

6.9.3. Socio-Cultural Environment

The main impacts envisaged during the construction stage of the projects under master plan update are described below;

6.9.3.1. Local Communities/Workforce

• During the construction stage, noise and dust problems will affect the health of the locals.

• Similarly, general mobility of the locals will be disturbed during this stage of the project.

• Construction of the road as well as the widening of the nullahs may create problems for the local residents as the drainage pattern may be disrupted. Similarly, due to the disruption of the drainage pattern, local’s shortest way to reach the main road will also be affected.

• During the construction stage, improper traffic management can create problems of traffic flow and accidents on roads.

• Usage of the Community’s common resources like potable water, fuel wood, etc. by the Contractor workforce may create conflicts between the community and the Contractor.

• Improper arrangement of the disposal of construction materials may create problems for the local residents during the construction stage of the project.

• Relocation/disturbance to the existing utilities like electric poles, telephone poles, etc. may affect the routine life of the community.

• Slippage of the Contractor’s staff while working at nullahs and canals may occur.
6.9.3.2. Loss of Livelihood

- During the construction stage, the business of shopkeepers working in the vicinity of the proposed projects may be affected due to the non-accessibility of vehicles.

- Agricultural land which is the main source of income of the people belonging to the proposed residential and industrial zones, will be affected during the construction stage.

- During the construction stage, the community will lose their livelihood as they are doing jobs at this site.

6.9.3.3. Disruption of Cultural and Historical Properties

During the construction stage, a few parts of the cultural and archeological sites may get affected by the widening of roads.

6.9.3.4. Cultural Issues

Induction of a foreign Contractor may cause cultural issues with the local community due to the unawareness of the local social norms and values. Similarly, the induction of outside labour during construction activities may create social problems like social movements, protests in the form of processions, etc.

6.9.3.5. Gender Issues

- As the Project activities are being carried out within the residential/agricultural/commercial areas of the local community, as a result of it, women activities in the field may be affected during the construction stage particularly in case of semi urban and rural areas.

- The induction of outside Contractor labour may create social and gender issues due to the unawareness of local customs and norms. It may also cause hindrance to the mobility of the local women.
6.10. Mitigation Measures

6.10.1. Physical Environment

6.10.1.1. Land Resources

• Land required for establishing contractor’s facilities including borrowing earth material (if required) and dumping excess spoil will be leased directly from private landowners by the Contractor. Rental terms will have to be negotiated to the satisfaction of the landowners concerned. Supervisory Consultants will monitor the process of restoration and ensure, through the terms of the construction contracts, that landowners are compensated according to the terms of the lease agreements, and the restoration actions agreed upon by the Contractors are duly carried out. The photo-documentation of the existing land prior to temporary acquisition should also be available, which will be beneficial to resolve the restoration conflicts between the landowners and contractor.

• Construction camps and workshop will be located at a minimum distance of 250 m from the existing plantations and settlements, etc. This limit will be 500 m in case of batching plant.

• Prior to the commencement of construction activities, the Contractor will submit a layout and location plan of the facilities to the Engineer-in-charge, and LDA Project Management Unit (PMU), for its scrutiny and approval.

• As far as possible, waste land or barren land i.e. areas not under agricultural, residential or forestation will be used for borrow material (if required) and setting up Project facilities.

• Following protection measures should be adopted for slope stabilization;

 – Trimming down of the slopes
 – Provision of benches for safety of the cut faces
 – Provision of ditch type drain along the toe
 – Provision of small toe walls against highly dipping beds
 – Provision of chutes for dispersal of surface runoff
Drains will be constructed to prevent flooding on the carriageways and surrounding areas in case of new roads.

- Good engineering practices will help in controlling the soil erosion both at construction sites and in peripheral areas, particularly in borrow and dumping areas and along the haul tracks. However, the following measures will be adopted as per site conditions:

- Depending upon the side slopes, retaining walls will be provided for ensuring the integrity of the road embankments against erosion especially in case of the flooding potential road in order to support the side slope, a retaining wall will be necessary.

- For weak side slopes flood prone areas, vegetative cover will be provided to check the erosion.

- The plantation for slope protection will be carried out, which will constitute fast growing indigenous trees with deep root system for anchoring the soil material and under growth of bushes and creeping grasses having capability of developing mesh of shallow fibrous roots to protect the slope against pitting from rain water.

- Main drainage courses should be lined to avoid soil erosion. Steep bed slopes should be avoided.

- Barren lands or natural depressions should be used for dumping the excavated spoil material ensuring that local drainage should not be disturbed.

- All the lands to be identified for disposal of spoil may be acquired on temporary basis on lease and after the needful, the land would be given back to owner. It is desirable that the Contractor should carry out the dumping in a systematic manner with stony material at the bottom and soil material on the top (for at least one meter depth) and the area is properly leveled so that the owner may bring this land into some economic use. This will be an additional benefit of the Project to the local communities as there is shortage of level land in the area for cultivation or otherwise.
Chapter 6: SCREENING OF POTENTIAL ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

• The Contractor will be required to train its workforce in the storage and handling of materials like furnace oil, diesel, petrol and chemicals, etc., that can potentially cause soil contamination. The Contractor will be required to prepare training manual and module for all the construction related activities along with the schedule of training program and submit to the supervisory consultants for approval.

• Soil contamination by asphalt and other obnoxious materials will be minimized by placing all the containers in caissons or dumped into pits lined with impervious liners to avoid contamination of soils/groundwater from leachates.

• Proper drainage facility will be provided at the camp areas to avoid the water accumulation, which will minimize the soil contamination.

• Proper solid waste management plan should be developed by the Contractor and implemented to avoid the litter and any other waste problems. Adequate number of solid waste containers should be placed within the camp area and surroundings to ease in storage and collection/disposal of solid waste.

6.10.1.2. Water Resources

• Availability of water for campsite facilities and construction purposes will be ensured by the Contractor prior to the start of construction activities. The Contractor will seek approval from the PMU and LDA/Local departments for use of the water resources for construction purposes.

• The Contractor will be required to liaise closely with the local communities to ensure that any potential conflicts related to common resource utilization for the Project purposes are resolved quickly.

• The Contractor will prepare guidelines for the workers for minimizing the wastage of water during the construction activities and at campsites.

• Construction camps will be established in the area with adequate natural drainage channels in order to facilitate flow of the treated effluents.

• The wastewater effluent from the Contractor’s workshops and equipment washing-yards will be passed through gravel/sand beds to remove
oil/grease contaminants before discharging it into surface water sources. Similarly, the wastewater effluent from the campsite will be treated before its disposal into the surface water sources.

- Borrow pits and natural depressions with pre-laid impervious liners will be used to dispose of scarified/scraped material, and then covered with soil.

- At appropriate locations, proper outfalls for the road side drains to divert surface run-off from the carriageway, will be provided to prevent the flooding of streams and nullahs.

- A proper solid waste management plan (including storage, collection, transportation and disposal) should be developed to avoid contamination of the surface water resources.

- Batching plants should be placed at least 1 KM from any surface water body present in the project site. Water reuse and recycling strategy should be adopted on all batching plants

- During the construction activities it should be ensured that the paint or other lubricants should not spilled into water channels.

6.10.1.3. Solid and Liquid Waste

- A site waste management plan should be made the responsibility of the construction contractor to provide for the designation of appropriate waste storage area on the site and a schedule for the timely collection and removal of construction debris to an approved dump site.

- The organic waste produced during site clearing should be mechanically mulched and composted at the site and used for landscaping.

- Providing adequate number of camps/restrooms for the workmen and waste baskets and dumpsters is essential to keep the construction site clean and pest free.

- Arrangements should be made for regular garbage collection and removal of sewage from the construction site.
Chapter 6: SCREENING OF POTENTIAL ENVIRONMENTAL IMPACTS AND MITIGATION MEASURES

- Proper recycling techniques have to be followed for the recovery of recyclable materials as this will not only reduce quantity of solid waste, but will also provide suitable raw material for reuse.

- Proper disposal method (i.e. landfill) should be used keeping in view the ground conditions and burning and dumping of solid waste into drains should not be allowed.

- Contractor should instruct his work force not to throw solid waste here and there, and common storage points should be made by the Contractor from where at the end of the day contractor should transport the whole day’s solid waste to designated disposal site.

6.10.1.4. Ambient Air Quality

- The existing quarry sites will be used to borrow the aggregate materials.

- Asphalt plants should be located at least 500 m downwind from the populated areas, wildlife habitats, and Contractors’ camps, to minimize the impact of emissions.

- Asphalt and concrete batching plants should be equipped with dust control equipment such as fabric filters or wet scrubbers to reduce the level of particulate emissions.

- Vehicles and other construction machinery should be properly tuned and maintained, to avoid hazardous level of emissions.

- The standards applicable to gaseous emissions generated by the construction vehicles, equipment, and machinery will be enforced during the construction of works.

- Where dust emissions are high, these will be reduced by a regular sprinkling of water for keeping the dust settled, at least twice a day.

- In order to prevent environmental pollution, haul-trucks carrying, earth, sand, aggregate and other materials will be kept covered with tarpaulin to help contain the construction materials being transported within the body of each carrier between the sites.
6.10.1.5. **Noise Levels**

- LDA in consultation with other concerned departments such as EPA, Punjab will set up a system to monitor the noise levels in the Project Area near the construction activities.

- LDA through PMU will facilitate the EPA in enforcing noise standards as prescribed in the NEQS.

- For the construction machinery generating noise level in excess of that prescribed in NEQS and WHO limits, Contractor will make arrangements to bring the noise level within applicable limits (including proper tuning of vehicles and mufflers/silencers).

- Movements of the trucks and other construction machinery causing high noise levels must be restricted at night time to avoid disturbance to the nearby locality. Truck drivers should be instructed not to play loud music at night and stop use of horn.

- Proper noise barrier boundary walls will be built on asphalt/concrete plants which come close to any locality.

- To protect sensitive receptors including schools and hospitals from noise, thick tree plantation will be carried out towards the roadside, where there is enough space available between the boundaries of schools and roads.

- In order to avoid the noise pollution in the congested areas as far as possible Contractor should plan the construction activities in the off peak hours.

6.10.2. **Ecological Environment**

The detail mitigation of negative impacts on ecological environment are given in Appendix I. However summary of mitigation is given as under-:

Negative impacts on ecological environmental due to development of master plan can be mitigated by; minimizing biodiversity loss by developing Green Infrastructure, restoration of native vegetation on railroad and roadside verges and river and canal banks, Identification and conservation of areas important for priority animal species,
planning for nature conservation through the restoration of ecological networks, urban agriculture and kitchen gardening

6.10.3. Socio-Cultural Environment

6.10.3.1. Local Communities/Workforce

- Effective construction controls should be used by the Contractor to avoid inconvenience to the locals due to noise, smoke and fugitive dust.

- Proper arrangements in the form of alternative routes should be made to ensure that the mobility of locals should not be disturbed.

- After consultation with the traffic police, a proper traffic management plan should be prepared by the Contractor for mainroads specifically in order to avoid accidents.

- The Contractor will take due care related to the disposal of construction materials as well as solid waste disposal from the site, so that the nearby communities will not suffer.

- The Contractor will take care of the local communities water sources so that these should not be contaminated or destroyed.

- Safety lookouts should be built to prevent people and vehicles from passing at the time of heavy equipment operation area.

- Haul-trucks carrying concrete, aggregate and sand fill materials will be kept covered with tarpaulin to help contain construction materials being transported between the sites.

- In construction camps, amenities of life including clean food, water and sanitation facilities should be provided to these camps. The Contractor should arrange first aid boxes at camps.

6.10.3.2. Loss of Livelihood

- During the construction, accessibility of vehicles to the workshops should be ensured so that the business of shopkeepers will not be disturbed.
• Construction activities should be carried out during the night time, as most of the markets are closed at sunset.

• Affectees along with their children losing their agricultural land should be given employment opportunities on preferential basis during the construction stage.

• Similarly, in order to restore the livelihood of the people belonging to business and agriculture residing in nearby areas a proposed site for Truck Stand should be given labour opportunities during the construction stage.

6.10.3.3. Disruption of Historical Properties

• The main historical sites like shrines should be avoided from damage by the widening of roads. Similarly, by adopting protection measures, during construction, any negative impacts on cultural and historical sites may be minimized. In this regard, it is recommended that the Contractor should prepare a site specific management plan to avoid any damage to the sites.

6.10.3.4. Cultural Issues

• The Contractor will warn the workers not to indulge in any theft activities and if anyone would get involved in such type of activities, he will have to pay penalty and would be handed over to the police. Similarly, at the time of employing, the Contractor has to take care that the workers should be of good repute. The Contractor’s camp will be properly fenced and the main gate will be locked at night with a security guard to check prevent the theft issues from the community side.

• To avoid the cultural issues, the Contractor will facilitate the local labor during the construction activities.

6.10.3.5. Gender Issues

• The Contractor will have to select the specific timings for the construction activities so as to cause least disturbance to the local population, particularly women, considering their peak movement hours.

• The Contractor will take due care of the local community and the sensitivity towards the local customs and traditions will be encouraged.
• The Contractor will warn the staff strictly not to indulge in any un-ethical activities and to obey the local norms and cultural restrictions particularly with reference to women.

6.11. Environmental Impacts Resulting From Project Operation and Mitigations

6.11.1. Physical Environment

• Due to the development of residential schemes and societies with same level of standards and facilities like Lahore city the urbanization load on the city will be relieved.

• This will lead to the new opportunities for the commercial areas. The commercial markets will also develop which will share pressure on the existing overloaded commercial market and areas in the city.

• Due to the operation of the proposed roads and bridges along with extensions of the old ones will reduce the vehicular load in the city and generally traffic conditions will get improve during the operation stage.

• Due to the improved traffic conditions there will be a remarkable reduction in traffic hazards.

• Construction of the new bridges will divert the city traffic load into the relevant direction, which may help in the reduction of traffic congestion in the city.

• Surface run-off from the impervious surface of the carriageway or slopes can aggravate the drainage problems and can damage the road surface during the operation stage.

• If cross-drainage structures are not adequately maintained and cleaned, natural nullahs tend to become choked with debris and eroded soil, adversely affecting the quality of the surface water in the Project Area.

• Land value is the value of a property including all its improvements and upgrades. It is estimated in accordance to location, socioeconomics,
government regulations, desirability for residents as a place to live, vicinity to schools parks and recreational facilities, roadway accessibility, and distance to retail establishments. A parcel of land has a value based on surrounding improvements the authority has made. The Master Plan is a comprehensive long term plan intended to guide growth and development of Lahore Division. Therefore, with the implementation of the proposed Master Plan land values will increase considerable on proportional basis. The lands which are located near to the proposed residential areas especially commercial sides will increase considerably. This will be positive impact on the land owners. However, due to this increase in land will shift the trend of the local from agriculture farming to selling of land for residential and commercial purpose.

- The noise pollution will be lesser than the construction phase. However, it will definitely be more than the pre-construction stage on account of the increase in traffic on the newly constructed and widened roads. However, it is expected that the resultant sound level will remain well within the NEQS limits.

- Due to the operation of the parks and playgrounds, recreational activities among the locals will increase.

- Operation of the bus terminals will help in the reduction of the vehicular load in the city and overcome the haphazard condition in the old bus terminals.

- Due to the construction of intercity bus terminals at the new locations, traffic load in the city will be reduced to a large extent.

- During the operation stage of all the projects, noise and air pollution problems for the nearby residing community as well as for the area may increase.

- Spillage of oil and other lubricants at Bus terminal and Truck stand will contaminate the soil as well as the surface water resources.

- During the operation stage of the facilities, it is expected that about 20,000 tons per day of solid waste will be generated from Lahore division. Municipal
solid waste produced from Lahore Division if not managed properly, will cause aesthetic problems and also produce odor along with the spread of many diseases. Similarly, medical waste produced from medical facilities etc. if not properly managed and disposed, it can result in injury by contaminated sharp material and infection with Hepatitis B, C, and HIV etc. At present for the Lahore district, LWMC will be in charge for the management of solid waste while district governments are responsible for management of solid waste in others districts

- During operation stage about 5000 cusec of wastewater will be generated from Lahore Division. This waste water poses the threat to fresh water resource especially to River Ravi if not been treated. Additionally it may deteriorate quality of downstream and may also be threat to the local flora and fauna.

- About 6500 cusec of fresh water will be required; currently ground water is used as fresh water resource in Lahore division. If same will be used, then it will pose negative impact on our ground water resource. Already Lahore district ground water is depleting at the rate of 2.5-3.0 feet per year.

6.11.2. Ecological Environment

The details Ecological Impacts and mitigation during operational stage are given in Appendix I

6.11.3. Socio-Cultural Environment

- Increased number of planned residential areas will be a positive impact regarding the local business of the shopkeepers, tourist guides, hotels and food stalls. However, this increased number of visitors may become a threat to the available natural resources. This may also create uneasiness for the locals.

- Noise generated by the vehicles will further increase, which will disturb the local communities, school staff and students, etc. existing near the roads.

- Health problems on account of air pollution may increase in the operation stage of the Project.
6.12. Mitigation Measures

6.12.1. Physical Environment

• For the air and noise quality, a monitoring system will be established by LDA/PMU and EPA to ensure that ambient air and noise levels are within the permissible limits.

• To reduce the noise levels, if deemed necessary, provision of thick tree plantation, noise barriers and double glazed windows will be assessed as per site conditions for the sensitive receptors including schools and hospitals.

• In order to cater to the solid waste problems, the solid waste management plan should be developed. The LWMC model should be replicated in other districts of Lahore division as well.

• Medical Waste should be separated and collected, transport and disposed in accordance with Punjab hospital waste management rules 2014. The ultimate collection, transportation and disposal of medical waste should be given to LWMC instead individual management. Strong monitoring system is required for management of hospital waste. (Detail given in Chapter Stakeholder consultation with LWMC).

• Already LWMC has identified new landfill sites in Kasur and Lahore districts but for other districts new landfill sites should be identified. (Detail given in Chapter Stakeholder consultation with LWMC).

• For the liquid waste problem, wastewater treatment plant(s) should be constructed and before the disposal of wastewater into the surface water body, it should be treated properly. (Detail already given in Planning mitigations)
For Groundwater usage, alternative options of using fresh water resource like canal water and river water should be explored. (Detail Already given in Planning mitigations)

In order to retrieve the aesthetic view of the area, sufficient additional plantation of different trees will be carried out.

In order to avoid the soil contamination, a fully paved area should be designated for the vehicles maintenance in each bus terminal/truck stand.

Solid waste from the incinerator, slaughter house, Mutton and fish market should be collected properly and disposed of after proper recycling.

In order to avoid air pollution generated by the incinerator pollution control devices like Electrostatic Precipitator and wet scrubber should be used.

It will be ensured by the road/Highway Department that storm water drains and road drainage system are periodically cleared to maintain the water flow.

6.12.2. **Socio-Cultural Environment**

- In order to solve the accident problems, speed limit, sign boards and speed breakers should be provided on roads.

- The visitors should be briefed about not damaging/degrading the natural resources.

- Traffic police should ensure that the vehicles are properly tuned up to minimize the air and noise pollution.

- Firefighting arrangements should be provided in the operation stage for the shopping complexes and parking plazas, and bus terminals, etc.

- Proper arrangement for the cleanliness of the toilets and waiting rooms should be provided for the passengers at bus terminals.
Chapter 7: ENVIRONMENTAL MANAGEMENT AND MONITORING PLAN

The goal of the Environmental Management and Monitoring Plan (EMMP) is to ensure that all the necessary mitigation measures are carried out to counter any adverse environmental impacts and that enhancement of positive measures is used, where feasible and practical. One of the aims of the monitoring plan is to actually observe and analyze these impacts, thereby providing the information to help in the modification of mitigation measures to reduce the risks and hazards associated with these development activities.

7.1. General

For the effective implementation and management of the proposed mitigation measures, it is necessary to develop an EMMP, which basically provides a mechanism to address the potential impacts of the Project activities and to develop a monitoring program in order to minimize the potential impacts during the design, construction and operational stages of the Project. The EMMP has been prepared with the objectives of:

- Outlining the mitigation measures required for avoiding or minimizing the potential impacts assessed by EIA.

- Developing a monitoring mechanisms and identifying the requisite monitoring parameters to confirm the effectiveness of the mitigation measures recommended in the EIA.

- Defining roles and responsibilities of the Project proponent for the implementation of EMMP and identifying areas, where these roles and responsibilities can be shared with other parties involved in the execution and monitoring of the Project.
Chapter 7: ENVIRONMENTAL MANAGEMENT AND MONITORING PLAN

- Defining the requirements necessary for documenting compliance with the EMMP and communicating it to all the concerned regulatory agencies.

- Prescribing the mechanisms with which consultation with stakeholders during the Project will be maintained.

7.2. Structure of EMMP

The EMMP consists of the following sections:

- Legislation, Guidelines and Environmental Standards
- Organizational Structure and Roles and Responsibilities
- Mitigation Management Matrix (MMM)
- Environmental Monitoring Program
- Communication and Documentation Plan
- Change Management Plan
- Training Program

7.3. Legislation, Guidelines and Environmental Standards

The main environmental legislation relevant to the Project are the Pakistan Environmental Protection Act, 1997 (Amended 2012), EPA Regulations 2000, etc. NEQS, laid down by Pak-EPA will be followed.

Details of all the applicable legislation and acts have been provided in Chapter-2 of this document.

Following standards will be followed during the design, construction and operation stages of the Project.

7.3.1. Effluents

The NEQS will be used for the effluents. The NEQS for industrial and municipal effluents define the maximum allowable concentration of pollutants in effluents
Amendment in Master Plan for Lahore Division (The Project)
Environmental Impact Assessment (EIA) Report

Chapter 7: ENVIRONMENTAL MANAGEMENT AND MONITORING PLAN

released into different types of receiving bodies. These standards will apply to all the effluents from Project facilities.

7.3.2. Gaseous Emission
The NEQS for gaseous emissions define the maximum allowable concentration of pollutants in gaseous emissions from the industries. This standard will apply to all gaseous discharges from the Project facilities.

7.3.3. Ambient Air Quality
NEQS Ambient air quality standards should be used for the project in Appendix II

7.3.4. Noise
Standards for vehicle-generated noise are prescribed under the NEQS and will be followed (Appendix II)

7.3.5. Drinking Water
Potable water quality standards also form part of the NEQS. However, WHO drinking water quality guidelines will be used as reference point for determining drinking water quality. These are outlined in Appendix II

7.3.6. Disaster Management
After the devastating impact of Earthquake 2005, National Disaster Management Ordinance promulgated in Dec 2006 which was later on passed by the Parliament as National Disaster Management Act-2010. The implementation of Disaster Management Act, 2010 would be ensured by the National Disaster Management Commission and Provincial Disaster Management Commission which was formed under this act.

7.4. Roles and Responsibilities
The following organizations would be involved in the implementation of the proposed Project:

• Lahore Development Authority (LDA) as the Project proponent and owner of EMMP.
Chapter 7: ENVIRONMENTAL MANAGEMENT AND MONITORING PLAN

7.4.1. Lahore Development Authority (LDA)

Lahore Development Authority (LDA) is responsible for new planned development in Lahore, Punjab, Pakistan. It also regulates and issues permits for new construction and housing projects, private houses, and commercial development. It also manages Lahore’s parks and green areas. The Punjab Legislative Assembly established the Lahore Development Authority under the LDA Act of 1975. It had previously been called the “Lahore Improvement Trust”. It has three wings:

- Urban Development Wing
- Water and Sanitation Agency (WASA)
- Traffic Engineering and Planning Wing (TEPA)

The Project Proponent (i.e. LDA) along with district/local governments will be responsible for ensuring the overall implementation of EMMP during the Planning, Designing, Construction and Operation stages of the Project.

During the Construction stage of the Project, LDA will ensure that the Project activities are being executed as per provisions of the EMMP and other applicable...
laws and regulations. It is proposed that an Environmental Officer (EO) supported by one environment inspector and one social inspector should also be deployed by LDA to ensure that design and implementation activities are being carried out as per provisions of the EMMP. In addition to that, EO will also look after the upcoming future projects. Organogram of LDA is attached as Figure 8.1.

During the operational stage, concerned departments will be responsible for the implementation of mitigation measures and LDA will be responsible through EO for monitoring of O&M activities being carried out by different departments to ensure that they are in compliance with the EMMP.

Note: DG : Director General, ADG(H) : Additional Director General (Housing), DKA : Director Kachi Abadi, DLD : Director Land Development, DEM : Director Estate Management, DEM(QAT) : Director EM Quaid-e-Azam Town, DEM Ave : Director Estate Management Avenue, PDIT : Project Director Information Technology, DCS : Director Computer Service, DE : Director Enforcement, DHP : Director Hidden Properties, D Law : Director Law, CTP : Chief Town Planner, DTP : Director Town Planning, D Comm : Director Commercialization, Arch : Director Architecture, D Rcry : Director Recovery, CMP : Chief Metro Politian Planner, DMP : Director Metro Politian Planning, D Rch : Director Recovery, CE : Chief Engineer, ACE : Add Chief Engineer, DDHQ : Deputy Director Head Quarter, DR : Director Revenue, DB : Director Building, DEME : Director, DP&D : Director Planning & Development, ADG (HQ) : Additional Director General(Head Quater), DEdu : Director Education, DA : Director Admin, DF : Director Finance, DPR : Director Public Relation, C&I : Coordination & Implementation
Specific responsibilities of LDA at all project stages are as follows:

7.4.1.1. **Planning and Design Stage**

EO will be responsible for:

- Ensuring that mitigation measures proposed at the planning and design stages have been adequately incorporated in the design.
- Setting up systems for environmental management.
- Coordinating with different agencies including EPA-Punjab, LDA/PMU, and district/local government responsible for compliance of environmental
legislation. Liaison will also be maintained with local NGOs and community based organizations (CBOs) that make observations regarding the implementation of the Project components.

• Ensuring that the terms of reference for each Project Contractor adequately cover the environmental and social issues and participate in short listing, where appropriate.

• Ensuring that the Contractors develop and carry out environmental implementation plans that are consistent with the EMMP.

• Supervising environmental assessments, and providing substantial inputs and guidance.

• Having EIAs/ IEEs submitted for approval to the EPA, Punjab.

7.4.1.2. Pre-Construction Phase

EO and his staff will be responsible for:

• Verifying PAPs on the basis of specified legal documents.

• Verification of public facilities and the utilities needed to be relocated. In the case of relocation of public utilities, ensure that alternative arrangements have been carried out.

• Carrying out consultation and information dissemination campaign on the compensation procedures, entitlement packages, and the proposed resettlement sites.

• Verifying that proper traffic management plan has been provided in case of rehabilitation of the existing roads.

• To assist in establishing a grievance redressal committee to ensure fair and transparent resettlement processes.

• Ensuring that an adequate notice period is given to PAPs before shifting.

• Identifying major issues of conflict between PAPs and the LDA/PMU/Contractors during the implementation of resettlement and relocation activities.
Ensuring that the Contractor has carried out photo documentation of the construction sites as well as areas selected for establishing construction camp and other facilities like asphalt plant, etc. and copies of the same have duly been received by LDA.

7.4.1.3. Construction Phase

EO and his staff will be responsible for:

- Liaison between Project staff of LDA, Supervision Consultant's (SC) staff and PMU to monitor environmental compliance during construction.

- Supervising and providing technical support to the Project and operations staff to help ensure compliance with the EMMP.

- Identifying any problems due to the restricted access during construction and verifying whether ramps/diversions/alternative routes have been provided, where ever required.

- Periodic review of community complaints register maintained by SC and Contractor.

7.4.1.4. Operation Stage

- Coordinating with the operations staff working under different departments including Municipal Committee, Heath, Education, Forest and other relevant departments to monitor environmental compliance during the operation of Project facilities.

- Reporting on the progress of environmental compliance to the EPA-Punjab.

- Assessing the long-term environmental impact during the operation of the Project facilities.

- Monitoring of tree plantation plan as per EMMP requirements to ensure proper O&M of the plantation.

7.4.2. Supervisory Consultants

SC will be responsible for the following activities:
• Supervising the Project’s Contractor(s) and ensuring that all the contractual obligations related to the design and construction, as well as environmental and social compliance are met.

• Ensuring that day-to-day construction activities are carried out in an environmentally sound and sustainable manner.

• Assisting the Project management for coordinating with officials, community groups, government departments etc. on the environmental issues and obtaining the necessary clearances from the regulatory authorities.

• Monitoring of the environmental aspects of the Projects during construction to ensure that the environmental requirements of the contract and the mitigation measures proposed in the EMMP are implemented.

• Supervising contractor(s) and preparing environmental input for the monthly progress report.

• Carryout environmental training activities for Contractor(s) staff.

• Ensure that asphalt plants, construction camps and other facilities are properly sited and installed in accordance with the contract.

• Determine the timing and exact locations of both baseline and routine air, noise and water quality monitoring in accordance with the contract provisions.

• Undertake critically important routine visual observations for construction, waste disposal and overall environmental management practices by the Contractor(s).

• Devise solutions to environmental issues as they arise. Development Projects inevitably give rise to the problems of excessive dust, noise levels and other impacts that are in some instances unavoidable. Good construction supervision requires that every effort be made to minimize these impacts. A team approach is essential. Circumstances may arise
requiring creative solutions based on site specific conditions as they are encountered.

- Check that the Contractor backfills the soil, compacts, and leaves the ground in the original condition after excavation of pits for subsurface investigations/borrow pits.

- Keep checks and controls so that the pollution of the land and water resources due to the spills of lubricants, fuel, chemicals, and other wastes does not take place.

- To see that the Contractor keeps the damages to the minimum while making tracks for accessibility and that the damage is remedied properly.

- Monitor that the Contractor adjusts his working hours during the construction activities in such a manner that it causes least inconvenience to the local population.

- To keep the working site/camps tidy so as to avoid unhealthy impacts on the work force.

7.4.3. Contractor

As referred earlier, implementation of the EMMP will be the sole responsibility of the Contractor(s). All the environmental measures related with the construction activities will be implemented by the Contractor and MMM. Contractor will depute a Manager, Environment, Health and Safety (EHS), who will be responsible for implementation of the EMMP. He will prepare a traffic management plan, effluent and solid waste management plan and emergency response plan. In case the Contractor fails to implement the mitigation measures, he will be responsible to pay penalty to be fixed by a committee comprising EO-DAM, Environmental Specialist of PMU and Supervisory Consultant (i.e. Resident Engineer). Supervisory Consultant will make recommendation to deduct the amount of penalty from the invoice of the Contractor.

7.4.4. PMU & District/ Local Government

PMU under LDA is an entity responsible for the approval of Projects and disbursement of funds for implementation of the Projects. In addition to this, PMU will
be responsible for coordination between other concerned departments, authorities and other relevant departments including local government.

To implement the updated Master Plan, LDA will establish PMU based at Lahore with field offices at district locations and responsible for implementation, monitoring and reporting of the project. In addition PMU is also responsible for release of funds as per work done. Local departments are responsible for identification of Projects through relevant line departments and to ensure implementation of the projects in a sustainable and socially acceptable manner.

Local departments will also establish an environmental unit, which is responsible to ensure the compliance of National Environmental Legislation and safeguards policies of donor agencies. Environmental Specialist at local level will be responsible for compliance of EMMP activities for the selected Project to be implemented under this Project. He will visit the Project Area periodically and ensure the implementation of the EMMP in its true spirit.

7.4.5. National and Provincial Disaster Management Authority

The National Disaster Management Authority (NDMA) is the focal point for coordinating and facilitating the implementation of strategies and programs on disaster risk reduction, response and recovery. Similarly, Disaster Management Authorities has been established at provincial, regional, district and municipal levels.

NDMA provides technical guidance to national and provincial stakeholders about formulation of plans, strategies and programs for disaster risk management. NDMA is also working on capacity development of national, provincial and local stakeholders in collaboration with PDMAs and DDMAs.

The NDMA has also developed National Disaster Risk Management Framework in which nine priorities area has been identified. The framework is given as under:- “Achieving sustainable social, economic and environmental development in Pakistan through reducing risks and vulnerabilities, particularly those of the poor and marginalized groups, and by effectively responding to and recovering from disaster impact”.

Nine priority areas that have been identified within this framework include:-
Chapter 7: ENVIRONMENTAL MANAGEMENT AND MONITORING PLAN

i. Institutional and legal arrangements for DRM
ii. Hazard and vulnerability assessment,
iii. Training, education and awareness,
iv. Disaster risk management planning,
v. Community and local level programming,
vi. Multi-hazard early warning system,
vii. Mainstreaming disaster risk reduction into development,

Provincial Disaster Management Authority was formed as result of National Disaster Management Act, 2010. PDMA is the coordinating authority that provides a platform for all provincial departments to formulate strategies, preparedness and response to a disaster. In case of a disaster, PDMA not only oversees search, rescue and evacuation of the affected people, but also takes concrete measures to provide immediate relief, early recovery and long-term rehabilitation to them. In case of emergencies, the PDMA works closely with District Governments to organize initial and subsequent assessment of disaster affected areas, and determine the course of action to ensure long-term rehabilitation of the affected population (DRP-2013)

PDMA has developed Disaster Response Plan (DRP) that clearly mentioned the coordination mechanism between key provincial departments. The DRP provides guidelines that must be followed in case of the disaster.

PDMA has also setup Command and Control center and High Frequency Radio Network in order to coordinate disaster response. All departmental representatives report to the 3C in case of a natural disaster. These departmental representatives are subject experts and they furnish their advices to the Director General, PDMA to help him plan the course of action in response to a disaster. All departments possess equipment that can be mobilized and the PDMA’s job is to utilize the cumulative resources of the Government of Punjab to respond to a disaster.

In case of the Lahore Division Master Plan Project the PDMA is the supreme organization that formulates polices and strategies in order to prevent and reduce the disaster. The District Disaster Management Authority DDMA and Tehsil Disaster Management Authority TDMA will work in close coordination with PDMA and ensure the implementation of Disaster Preparedness and Response Plan (DPRP).
7.4.6. **Roles and Responsibilities**

The duties and responsibilities of PDMA, DDMA are given as under-:

PDMA

- Coordinate complete spectrum of disasters in the province/region,
- Formulate provincial/regional disaster risk management plan,
- Continuously monitor hazards, risks and vulnerable conditions within the province/region,
- Develop guidelines and standards for provincial/regional and local stakeholders regarding their role in disaster risk management,
- Ensure preparation of disaster risk management plans by all districts,
- Coordinate implementation of provincial disaster risk management plan in accordance with the National Framework
- Promote education, awareness and training on disaster risk reduction and response,
- Provide necessary technical assistance and advice to local authorities for carrying out their functions effectively,
- Coordinate emergency response in the event of a disaster, through the Provincial/Regional Emergency Operations Centre (PEOC),
- Develop specific capabilities to manage threats that exist in the province/region,
- Perform such other functions as may be assigned by the Provincial/Regional Commission,
- Declaring State of Emergency
- Accessing and stabilizing the environment

DDMA

- Formulate district disaster risk management plan, based upon local risk assessment, and coordinate its implementation
- Review development plans of government departments and provide guidance on mainstreaming disaster risk reduction measures in these plans
- Continuously monitor hazards, risks and vulnerable conditions within the district, municipality, or cantonment areas
- Prepare guidelines and standards for local stakeholders on disaster risk reduction
- Conduct education, training and public awareness programs for local officials, stakeholders and communities
- Encourage involvement of community groups in disaster risk reduction and response by providing them necessary financial and technical assistance for implementing community level initiatives
- Examine construction in the area and if hazard safety standards have not been followed, direct the relevant entities to secure compliance of such standards,
- Invest in specific capabilities according the requirement to manage all types of threats peculiar to local area
- Undertake appropriate preparedness measures at district level; e.g. maintain an early warning system, identify buildings to be used as evacuation sites, stockpile relief and rescue materials and identify alternative means for emergency communications
- In the event of a disaster, organize emergency response through the District Emergency Operations Centre (DEOC)
- Maintain linkages with the Provincial Disaster Management Authority and the Relief Department, and perform such other functions as the Provincial Authority may assign to it.
- Assessing emergency services, supplies and equipment
- Obtaining emergency services, supplies and equipment
- Ensuring the public safety during an emergency
- Training of Staff and awareness to Public as how to deal during emergency situations

TDMA

- Give Awareness among public of different disasters and cope with it.
- Organizing Emergency Response and Relief
- Damage and Loss assessment in case of disaster
- Provide Emergency Services in collaboration with other departments and DDMA in case of Disaster

Union Councils

- Demand to DDMA for availability of local resources needed for disaster management
- Develop local policies and guidelines for vulnerability reduction.

7.4.7. EPA - Punjab

EPA-Punjab with representatives at district level is an environmental regulatory agency and responsible for the preparation of environmental legislation and to ensure their compliance. Being regulatory agency, EPA will ensure compliance of PEPA, 1995 (Amended 2012) and NEQS applicable to the Project. For this purpose, EPA representatives will make site visits as and when required or on the complaint of any stakeholder.
7.5. Environmental Mitigation Management Matrix

The environmental protection and enhancement are achieved in various ways. These approaches should begin right at the developing stage, i.e. i) Project location, ii) Design, specifications and tender/contract documents, iii) Construction activities and iv) Post completion activities i.e. operation and maintenance stage. Appropriate environmental management measures are required to be exercised in a cascade order by the Project proponent at each stage of the Project. All the stages of the Project have to be managed by adopting the proposed environmental mitigation measures, where, besides engineering aspects, due importance is to be accorded to mitigation measures which make a perfect blending with the surrounding ecosystem.

The key environmental and social issues, which have already been discussed in impacts and mitigation chapter, are as under:

- Land acquisition, resettlement and relocation of private and public infrastructure.
- Soil erosion and soil contamination at construction and operation stages.
- Contamination of water and air during the construction and operation stages.
- Generation of noise by vehicles, machinery and equipment during the construction stage.
- Accessibility to common resources during the construction stage, safety of locals and work force as a result of accident hazards during the construction and operation of the project.
- Traffic management during the construction stage.
- Waste disposal during the construction and operation stages.
- Cultural issues.
- Gender Issues.
MMM is provided at the end of this chapter, which establishes the linkages between the environmental and social impacts, mitigation strategy and the agencies responsible for execution. The MMM identifies the following:

- The required mitigation measures recommended in EIA.
- The person/organization directly responsible for adhering to or executing the required mitigation measures.
- The person/organization responsible for ensuring and monitoring adherence to the mitigation measures.
- The parameters which will be monitored to ensure compliance with the mitigation measures.
- The timing at which the mitigation or monitoring has to be carried out.

7.6. Environmental Monitoring Program

EMMP provides important information that allows more effective planning and adaptive response based on the assessment of the effectiveness of mitigation measures. This is extremely important in a development Project.

Environmental Monitoring is required to assess, whether the various mitigation measures as suggested are effective in attaining the goals of environmental protection. Without any environmental monitoring program, it is not possible to determine, whether the environment is being protected or not and any modification or further mitigation is required.

7.6.1. Objectives

The objectives of environmental monitoring will be as follows:

- To check compliance with the requirements of the EMMP by monitoring activities of the Project Contractors, which will be called Activity Monitoring.
- To monitor actual impacts of the Project Activities on physical, ecological and socio-economic receptors of the Project Area so that any impacts not anticipated in the EIA or impacts which exceed the levels anticipated in the
EIA, can be identified and appropriate mitigation measures adopted in time. This objective will be achieved through effects monitoring.

- To ascertain the residual impacts during the operation, post-Project monitoring will be carried out.

To achieve these objectives the following monitoring program will be implemented.

7.6.1.1. **Activity Monitoring**
Activity monitoring will be carried out to ensure compliance with the requirements of the EIA. Inspection will be done using checklists developed specifically for the Project by the LDA, SC and the Contractors as per their roles and responsibilities.

Activity monitoring will be the responsibility of all organizations involved in the implementation and operation i.e. DAM, SC and the Contractors and hence it will be done at three levels.

- Activity Monitoring by the Contractor’s staff
- Activity Monitoring by SC field monitors
- Activity Monitoring by LDA/PMU.

EO of LDA will visit the Project activities regularly during the construction. SC will supervise the monitoring through full time supervision. Any non-compliance observed by SC will be recorded in non-compliance recording forms and discussed during the environmental meetings. In addition, compliance monitoring protocol for physical environment is given in Table 8.1.

7.6.1.2. **Effects Monitoring**
For Effects Monitoring, EO will be responsible to monitor the effects as described in the monitoring requirements. Outline monitoring requirements have been recommended in the EMMP; however, a detailed monitoring program will be prepared by the EO of LDA/PMU. The monitoring program will describe in detail the resources and methodology that will be adopted for the purpose of Effects Monitoring. Effects monitoring will be carried out for the following parameters:

7.6.1.3. **Physical Environment**
This monitoring will be targeted at identifying the project impacts on:
• Soil

• Water

• Ambient air and stacks

Effects monitoring protocol is provided in Table 8.2.

7.6.1.4. Ecological Environment

Effects on ecological environment will be monitored by LDA with the help of forest department, who will conduct quarterly survey during construction and subsequently during the operation of the Project. For the monitoring purpose, wildlife and flora surveys will be conducted to determine the effects of different project activities on wildlife and flora. A compliance register will also be maintained for the effects and compliance monitoring.

7.6.1.5. Socioeconomic Environment

Effects on socio-economic environment will be monitored by conducting monthly survey during construction and final post Project survey by EO. The survey will be structured to ascertain the levels of impacts during the course of the project and the implementation of mitigation measures prescribed in the EIA such as hiring of local employees, payments of land compensation, health and safety of communities, mobility of local women etc. The EO supported by social inspector will also verify the maintenance of social complaints register by SC.

7.6.1.6. Post-Project Monitoring

After completion of the Construction, post-Project monitoring will be carried out. The objective of this monitoring will be to determine the levels of residual impacts of the Project on physical, ecological and socio-economic receptors of the Project Area. The monitoring may be carried out within one month after the end of all activities in the Project Area. The post-Project survey report will be submitted within two weeks after completion of the survey. As part of the post-Project monitoring, field monitors will also check restoration of sites restored at the time according to the requirements of the EIA.
<table>
<thead>
<tr>
<th>Receptor</th>
<th>Location</th>
<th>Monitoring Mechanism</th>
<th>Monitoring and Reporting Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil Erosion</td>
<td>Construction sites, camp sites, water quality (especially road, industrial sites, residential sites)</td>
<td>Visual observations</td>
<td>Daily during routine monitoring by activity monitors and reported on a weekly basis.</td>
</tr>
<tr>
<td>Water Quality</td>
<td>Points where effluents is being discharged into drains, nullahs, canals and river, Surface drainage channels, Concrete preparation plants, Worker’s camp, Disposal areas of earthfill or solid waste, Fuel (Petrol, Oil and Grease) products storages, Vehicle and machine repairing and servicing yards. Discharge points from Commercial and Residential Areas</td>
<td>Discrete grab sampling and laboratory testing of water samples.</td>
<td>Sampling and laboratory testing should be done on Monthly basis during the construction and biannually during the operational stage. Discharges from the construction sites should be tested for temperature, pH, turbidity and dissolved oxygen. Treated effluent discharges from the worker’s camp to be tested for BOD₅. Outlet and drains from the mechanical repair units include testing for pH, turbidity, lead, hydrocarbons, and oil.</td>
</tr>
<tr>
<td>Dust Emissions</td>
<td>Tracks along the earth roads. At communities close to the access roads.</td>
<td>Visual checks</td>
<td>Weekly during routine monitoring by activity monitors and reported on a monthly basis during the construction period.</td>
</tr>
<tr>
<td>Noise Levels</td>
<td>Camp sites, Selected locations along the access tracks, Construction sites of health, education and commercial buildings, Sensitive receptors like schools, hospitals and community centers along the roads and commercial buildings during the operation stage</td>
<td>Noise meter</td>
<td>Once prior to the start of construction and then on a monthly basis throughout the construction period. Quarterly during the operational stage.</td>
</tr>
<tr>
<td>Ambient Air and Stack</td>
<td>Ambient air (w.r.t. proposed land use plan), Silencers of heavy machinery, trucks and other vehicles (especially on main, connecting and site way roads., Stack monitoring from Asphalt Plants.</td>
<td>LANCOM-III emissions monitoring system. Monitoring of ambient air quality in ppb.</td>
<td>Monthly monitoring of air pollution parameters including PM, NOₓ, SOₓ, CO, Hydrocarbons during the construction period and biannually during the operation stage only for ambient air</td>
</tr>
</tbody>
</table>
Amendment in Master Plan for Lahore Division (The Project)
Environmental Impact Assessment (EIA) Report

Chapter 7: ENVIRONMENTAL MANAGEMENT AND MONITORING PLAN

<table>
<thead>
<tr>
<th>Receptor</th>
<th>Location</th>
<th>Monitoring Mechanism</th>
<th>Monitoring and Reporting Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ecological Environment</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Cutting of trees | In all Project Area generally and at construction sites particularly during the construction stage and Project Area during the operation stage | Periodic visits at site to ensure that only those trees should be cut, which are demarcated for cutting. Surprises visits to campsites and to check the firewood availability at camp. Regeneration rate and growth of new plants. | - Weekly during routine monitoring and reported on monthly basis during the construction period and once a year monitoring and reporting during the operation period.
- Monthly Reporting during the construction stage and quarterly during operation. |
| Hunting of animals and birds | In all Project Area generally and at construction sites particularly | Periodic visits of Project Area and in consultation with community to get feedback on hunting by Contractor as well as outsiders |
- Monthly during routine monitoring and reported on monthly basis.
- Biannually during the operation period. |
| **Socio-cultural Environment** | | | |
| Land acquisition and relocation of private and public infrastructure | Project Area | Consultations with PAPs/stakeholders |
- Monthly during land acquisition and relocation of infrastructure and reported on monthly basis. |
| Inconvenience to community | All around the Project Area | Consultations with community to get feedback for inconvenience due to the construction activities to perform their daily routine chores. |
- Monthly reporting and monitoring during the construction period. |

Table 7.2 Recommended Effects Monitoring Protocol

<table>
<thead>
<tr>
<th>Receptor</th>
<th>Location</th>
<th>Monitoring Mechanism</th>
<th>Monitoring and Reporting Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil Erosion</td>
<td>Area of occurrence, Entire Project Area</td>
<td>Standard soil erosion and conservation techniques to check severity of damage, loss of soil cover and protection measures to be adopted.</td>
<td></td>
</tr>
</tbody>
</table>
- Prior to start of works.
- Monthly during the construction works.
- Comprehensive report after completion of works.
- Monthly during the rainy months of July, August, December and January and monthly during the remaining year. |
Chapter 7: ENVIRONMENTAL MANAGEMENT AND MONITORING PLAN

<table>
<thead>
<tr>
<th>Receptor</th>
<th>Location</th>
<th>Monitoring Mechanism</th>
<th>Monitoring and Reporting Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Quality</td>
<td>▪ Sampling from the points located at a greater distance from the construction sites to ensure they show the influence on wider range of receiving body.</td>
<td>▪ Sampling and laboratory testing of water samples from the receiving body.</td>
<td>▪ Sampling and laboratory testing should be done on quarterly basis during the construction stage and biannually during the operation stage.</td>
</tr>
<tr>
<td>Air Quality</td>
<td>▪ Existing hotels premises, residential colonies, schools, hospitals, etc. along the roadsides ▪ In project areas at specified points</td>
<td>▪ Ambient air quality monitoring in ppb.</td>
<td>▪ Quarterly air quality monitoring for NO\textsubscript{X}, SO\textsubscript{X}, CO, PM\textsubscript{10} during the construction stage. ▪ Once a year during the operation stage.</td>
</tr>
<tr>
<td>Tree Cutting</td>
<td>▪ Construction sites and near camp site at construction stage and plantation sites during the operation stage</td>
<td>▪ Visual checking and consultations with locals ▪ Generation rate of new plantation</td>
<td>▪ Monthly during construction and once a year during operation stage.</td>
</tr>
</tbody>
</table>
7.7. Communication and Documentation Plan

7.7.1. Kick-off Meeting
A kick off meeting will take place at the main camp of the Contractor before the start of construction. The purpose of the kick off meeting will be to demonstrate to the regulator and monitors that all the requirements prior to the start of the individual Project activities have been met and the LDA (through EO) and the concerned department, SC, and contractor(s) are ready to start the Project as per the requirements of the EIA/EMMP.

7.7.2. Meetings and Reports
Monthly meetings will be held during the construction stage. The meeting will be held at the Contractor’s camp during construction. The purpose of the meeting will be to discuss the conduct of the operation, non-compliances noted by SC/EO and their remedial measures. The meeting will be chaired by the representative nominated by LDA/PMU. The meeting will be recorded in the form of a Monthly Environmental Report (MER) prepared by SC and will be submitted to DAM and PMU. The report as a minimum will include:

- Summary of Project activities during the last month;
- SC monitors and Contractor’s environmental representatives present onsite;
- Summary of monitoring activities;
- Non-compliances observed and mitigation measures taken or required.
- Record of social complaints
- Record of change managements
- Record of water consumption
- Record of fuel consumption

7.7.3. Social Complaints Register
The SC will maintain a register of complaints received from the local communities and measures taken to mitigate these concerns. SC will report the status of the
complaints in his monthly report to the PMU and DAM, for information and further action. Quarterly environmental report to be submitted to LDA/PMU will also reflect the status of the social complaints.

7.7.4. **Change Record Register**

All changes to the EMMP or the Project will be handled through the Change Management Plan provided in Section 8.8 of the EMMP.

7.7.5. **Non-Compliance Record Register**

The SC will maintain a non-compliance record register to record all non-compliances observed during the construction activities. A copy of the register will be appended with each MER.

7.7.6. **Final Monitoring Report**

A final monitoring report will be prepared by SC after the completion of the construction activities at each site. The report should address the following:

- Introduction;
- Details of the Project Activities;
- Natural Resource Used by the Project;
- Record of Non-compliances;
- Recommendations for future Projects.

After thorough review, PMU will submit a final monitoring report to LDA/PMU, District Departments and EPA-Punjab.

7.7.7. **Photographic Record**

SC will maintain a photographic record of all the areas to be used during the Project. As a minimum the photographic record will include the photographs of residential and commercial structures relocated/compensated, parking areas, access track, camp sites, and activity monitoring of different categories during the construction stage.
7.8. Change Management Plan

The EIA for the proposed operation recognizes that changes in the operation or the EMMP may be required during the operation and therefore provides a Change Management Plan to manage such changes. The management of changes is discussed under two separate headings, Additions to the EMMP and changes to the Operation of the EMMP.

7.8.1. Additions to the EMMP

This EIA including EMMP have been developed based on the best possible information available at the time of the EIA study. However as at the conducting of EIA study, project is at master planning stage, so it is possible that during the conduct of the proposed Project, additional mitigation measures based on the findings of the environmental monitoring during construction and operation may have to be included in the EMMP. In such cases following actions will be taken:

- A meeting will be held between LDA/PMU, SC and the concerned Contractor. During the meeting, the proposed addition to the EMMP will be discussed and agreed upon by all parties. Based on the discussion during the meeting, a change report will be produced collectively, which will include the additional EMMP clause and the reasons for the addition.

- The report will be signed by all parties and will be finalized at the site office. A copy of the report will be sent to LDA/PMU, Contractor and SC head offices. Prior to the start of activities as per changes made in EMMP, approval will have to be taken from EPA, Punjab. All relevant Project personnel will be given information of the addition. These additions will be reported in the MER by SC. Copy of approved additions from EPA, Punjab will be sent to LDA by PMU for their record.

7.8.2. Changes to the Operation

The change management system recognizes three orders of changes:

7.8.2.1. First Order

A first order change is one that leads to a significant departure from the Project described or the impacts assessed in the EIA and consequently require a
reassessment of the environmental impacts associated with the change. Action required in this case will be that the environmental impacts of the proposed change will be reassessed by EO and SC and sent to the EPA for approval.

Examples of such changes include:

Changes in the waste disposal methods such that contamination of the soil or water in the protected areas may be anticipated. Deviations from the minimum requirements for Effects Monitoring specified in the EMMP.

Changes in the documentation, communication, or stakeholder’s consultation program such that the overall objective of documenting compliance with the EMMP and its communication to LDA, PMU, SC and the Project Contractor(s) or interested stakeholders at regular intervals is not being met.

7.8.2.2. Second Order

A second order change is one that does not result into change in the Project description or impacts that are significantly different from those in the EIA.

Action required for such changes will be that EO will reassess the impact of the activity on the environment and specify additional mitigation measures, if required, and report the changes to the LDA through PMU.

Examples include:

Change in the location of Project components like parks, parking plazas, commercial centers or any other important project components.

Increase in natural resource usage particularly water such that the increase can be accommodated without having any effects on the natural resource or the local communities, which are using that resource.

Increase in the area or change in levels of the camp sites or access track such that it does not significantly change the assessment made in the EIA with regard to the impacts on vegetation, wildlife and communities.

Changes in the waste disposal methods such that contamination of soil or water will not occur.
Changes in the documentation, communication, or stakeholder’s consultation program such that the overall objective of documenting compliance with the EMMP and its communication to LDA, PMU, SC and the Project Contractors or interested stakeholders at regular intervals is being met.

7.8.2.3. Third Order
A third order change is one that does not result in impacts above those already assessed in the EIA, rather these may be made on site to minimize the impact of an activity such as re-alignment of a particular road section to avoid cutting of a tree, relocation of construction camp sites to minimize clearing of vegetation etc. The only action required for such changes will be to record the change in the Change Record Register.

7.8.3. Disaster Management Plan
In this section each disaster that can occur in areas of Lahore division has been discussed with its preventive and mitigation measures.

7.8.3.1. Flood
- The project sites include two rivers i.e. Ravi and Sutlej and number of canals and drains so there is chance of flood hazard to occur at the project sites. According to the PDMA-DRP, the River Ravi belongs to the category B flooding (medium Level Flood). Two categories of flood can occur in the project area i.e. urban and riverine. The recent flood noted in River Ravi is at Shahdara Gauging Station is 250,000 cusecs and considered as medium flood level. This is the highest flood level noted in River Ravi after year 2000 as construction of Thein Dam on Indian side greatly reduces the flows in River Ravi while the highest flood that observed in River Ravi is in 1988 which was around 586,000 cusecs.
- In Sutlej River Most of the flow is yielded by heavy monsoon rains. The maximum recorded flood discharge occurred in 1955, when the river flowed at nearly 600,000 cubic feet (17,000 cubic metres) per second. The risk of floods has drastically reduced since construction of series of dams on Sutlej River on Indian side.
- Flood is considered as most drastic and re-occurring hazards in Pakistan. Roughly 1.84 million people across Pakistan have been affected by floods triggered by heavy monsoon rains. At least 346 people have been killed and 620 others have been injured in flood-related incidents, according to the latest figures released by the National Disaster Management Authority (NDMA).
• The most recent flood was occurred in current year of 2014 and considered as one of the biggest flood in the history of Pakistan. According to the National Disaster Management Authority (NDMA) almost 312 people have died, with 2,275,000 affected and nearly 1.7 million acres (687,965 hectares) of crops lost due to this recent flood. The most affected were in Punjab Province and declared a state of emergency.

• Some of the areas proposed in the Master Plan are prone to flood for which mitigation are proposed in this report. Still if due to unusual event if flood came then following mitigations will be adopted:

 - Flood Warning Centre would analyze situation before 1 or 2 days in accordance with the travelling time of flood with coordinating Pakistan Meteorological Department, Irrigation Department, WAPDA, Indus water commission and Police telecommunication (Head works and barrages) and accordingly flood warning should announce and information should sent to PDMA and related agencies.

 - When flood warning should announce PDMA would implement state of emergency in the area and evacuation would be done in accordance with DPRP.

 - DDMA, TDMA and DRC will do their responsibilities in accordance with DPRP.

 - The peoples would ask to move at safer place and accordingly temporary camps should be provided.

 - Rescue and Emergency activities in accordance with DPRP should start soon after the flood hits the area. The objective of Rescue and Emergency activities is to save life of each and every individual who not been moved to safer place rather than property or valuables.

 - Temporary hospitals should be made at camp area. Ensure the supply of food and portable water in the camps.

7.8.3.2. Earthquake

Earthquake is also an inevitable disaster lead to thousands of life loss and property whenever it hits any part of world. Although the project area lies in moderate level of seismicity still there are chances of earth quake to occur. The worst Earth quake in the history of this region was in 1827 where almost thousands life was lost. The Pakistan most deadly earthquake of 8th October 2005 also caused few casualties in this area with a measurement of 7.6 on Rector Scale.

Whenever the earth quake comes there are very less chance of getting out of earthquake because it comes with in no time. Earthquake may lead to certain other hazards like Fire, Dust emissions storm and explosions.
The most serious thing about the earthquake is that it cannot be predicted in advance. But preventive measure and preparations should be done in order to minimize the disastrous effects of earthquake.

The preventive measures for earthquake are given as under:-

- Incorporating earthquake resistant features in all low rise and high rise buildings to be manufacture in new city accordance with buildings' codes, guidelines, manuals and byelaws.
- Making all public utilities like water supply systems, communication networks, electricity lines etc. earthquake-proof. Creating alternative arrangements to reduce damages to infrastructure facilities
- Preparation of disaster related literature in local languages with dos and don'ts for construction.
- Getting communities involved in the process of disaster mitigation through education and awareness.
- Practice an extensive community program of mass drills for earthquake damage reduction
- Inculcate basic know-how amongst school kids on earthquake dos and don'ts along with safety drills.
- Awareness among public and school children to have precautionary measures in event of Earthquake.

The measures that should be part of DPRP in event of an earthquake are given below:-

- Maintenance of law and order, prevention of trespassing, looting etc.
- Evacuation of people.
- Recovery of dead bodies and their disposal.
- Medical care for the injured.
- Supply of food and drinking water.
- Temporary shelters like tents, metal sheds etc.
- Repairing lines of communication and information.
- Restoring transport routes.
- Quick assessment of destruction and demarcation of destroyed areas, according to the grade of damage.
- Cordonning off severely damaged structures that are liable to collapse during aftershocks.
7.8.3.3. Out-Break of Diseases

Flood and Earth Quake after effects result in the outbreak of certain diseases. The epidemic and communicable diseases also poses threat to global health. The communicable and epidemic accounts for most of the reported death in the world (WHO)

Lahore is also not safe form epidemic. Recent outbreak of dengue virus in 2011 takes about 200 lives and was most serious viral attack in Lahore. Other reported communicable and epidemic that exists in Lahore is given below:

Malaria, TB, Polio, Measles, Diphtheria, Pertussis, Tetanus, Hepatitis, AIDS, ARI, Diarrhoeal Diseases, Typhoid, Meningitis, Hemorrhagic Fever, Dengue Fever, Leishmaniasis, Rabies, Plague, Influenza, Bird Flu, SARS

In order to assess the disease incidence and prevalence, the prevention and control of disease outbreaks require a thorough understanding of the environmental and host factors, the transmission pattern and other characteristics of causative organisms.

Government is already doing so much effort for control of epidemic and communicable diseases. The health departments of Punjab in connections with other departments and laboratories have launched many preventive and regulatory programs in order to control of such epidemics and communicable diseases. The major programs are given below:

- Prevention and control of communicable diseases
- Prevention & control of epidemics
- Emergency Preparedness & Response.
- Maternal Neonatal and Child Health including Family Planning.
- Health Education & Nutrition Development
- Epidemic Forecasting
- Epidemic Control
- Epidemic Response

The preventive and control epidemic programs that already running by the health department will remain as such for the master plan but also additional programs will launched by DDMA and PDMA in connection with health department. Further DDMA
will prepare detail DPRP in consultation with health department, EPA- Punjab and other stakeholders for control outbreak of any epidemic and communicable diseases.

7.8.3.4. Terrorist Activity

Pakistan at present is facing the most unique, difficult and gruesome faces of terrorism. No other country in the world is so deeply entangled in this problem as the Pakistan of today. There are so many reasons for Terrorist Activities. One main reason is American influence in Afghanistan in expression of “War against Terrorism”. Another reason is the Tribal Taliban who supports Afghanistan and in reaction of War against Terrorism they do terrorist activities in Pakistan.

The Lahore is also not saved from terrorist activities and in past there are so many terrorist activities in form of bomb blasts, attacks on major buildings and attacks on high profile peoples. So it is important to have a security plan for new city in order to tackle this problem.

Security Plan should be made by LDA in consultation with Police department, Army, PDMA, DDMA and TDMA. The security plan can be but not limited to the followings:-

1. Cameras should be placed in entire city which will be controlled by common control room
2. Well communication system should be there between police and control room
3. All vehicles that enter in to the city form major roads should check from scanners.
4. Bomb disposal squad and emergency police should be active at all times
5. Special Checking of police in all hotels and guest houses and well communication system should be placed between all hotels, guest houses and police.
6. Guards will be placed at all important locations in entire city

Still with above preventive measures, if there is the event of bomb blast or any terrorist activity then measures should be taken in accordance with DPRP.

7.8.3.5. Fire

Fire is also considering as most devastating hazard that can destroy objects and buildings within span of time. Fire occurs at any place and virtuously due to the
negligence of person. Some of the causes and common fire hazards are given as under:-:

- Kitchen fire due to cooking
- Overload of Electrical Systems, wiring connections etc.
- Combustibles materials near heat or flame
- Flammable Liquids solvents and Aerosols
- Battery Leaking
- Negligence in use of household appliances like ovens, dryers, cookers etc.
- Smoking inside cigarettes cigar etc.
- Overheating of Equipment’s like computers, TV etc.

The best way to protect from fire is the prevention techniques i.e. prevent the fire from happening. The most effective way to do this is to eliminate or minimize all fire hazards however if fire does occur then immediate steps should be taken to control it, and prevent it from spreading. Fire prevention and controls which should be part of DPRP is given below:-:

- A Fire safety plan should be developed for the division by LDA in coordination with Rescue department 112 and DDMA
- All high rise and commercial buildings that will construct in accordance with Master Plan should obey fire safety codes as per building by laws
- Regular drills of fire safety awareness should be required by all occupants of the buildings
- Regular Inspections of LDA to check that all buildings are in compliance with fire safety codes and per building by laws. High fine should be imposed if buildings found in violation.

7.8.4. TRAFFIC MANAGEMENT PLAN (TMP)

The map of current existing and proposed road network is provided in chapter-3, Project Description. A comprehensive phase wise traffic and transportation management plan needs to be developed by LDA through TEPA and other concerned local department.

The traffic management and control should be completed before the development phase. This can be done by LDA through the Design Consultant and SC in consultation with Traffic Police Department prepared a comprehensive Traffic Management Plan once the implementation of project has been confirmed. The
Amendment in Master Plan for Lahore Division (The Project)

Environmental Impact Assessment (EIA) Report

Chapter 7: ENVIRONMENTAL MANAGEMENT AND MONITORING PLAN

Traffic management plan is needed for smooth flow of traffic at all major roads during the construction activities of the Project.

7.8.5. MATERIAL TRANSPORTATION PLAN (MTP)

Material Transportation Plan is required to specify the routes for material transportation for the development activities. These routes be developed is such a way that there is minimum hindrance or disturbance to the local communities and flow of normal traffic. This will also become part of Traffic Management Plan.

7.8.5.1. Material Transportation HSE Arrangements

- Transportation timings should preferably be at night time to minimize the traffic conflicts.
- Filled trucks should be covered with tarpaulin to avoid fugitive dust and should be visually inspected for proper loading, sealing and decontamination.
- Bulk solid debris should be removed from the trucks with shovels and implements before leaving the site. Where necessary, trucks should be pressure washed before leaving the site. Pressure washing should only be used if other methods do not work.
- Vehicles should have passed an annual inspection and carry the fitness certificate.
- A summary chart representing the load and maps showing the proposed route to the disposal facility will be accompanied by each truckload. In the event of an accident involving the transported material, it will immediately be notified to SC, LDA and Traffic Police.
- The truck drivers will be strictly instructed not to play music and do not use horns at night time to minimize disturbances.

7.8.5.2. Material Transportation Documentation

- A field logbook will be maintained for the documentation. This logbook will additionally serve to document observations, personnel onsite, equipment arrival, and departure times, a truck exit inspection checklist and other project information.
- Field logbooks will document where, when, how, and from whom any vital project information is obtained. Logbook entries will be completed and accurate enough to permit reconstruction of field activities. Logbooks will be bound with consecutively numbered pages. Each page will be dated and the time of entry notice. All entries will be legible, written in black ink, and signed.
by the individual making the entries. Language will be factual, objective, and free of personal opinions or inappropriate terminology. If an error is made, corrections will be made by crossing a line through the error and entering the correct information. Correction will be dated and initialed. No entries will be obliterated or otherwise rendered unreadable.

- Entries in the field logbook will include at a minimum the following for each field work date:
 - Site name and address
 - Recorder’s name
 - Time of site arrival/entry on site and time of site departure
 - A summary of any onsite meetings
 - Description of transport vehicle(s)
 - Quantity of excavated soils in truckloads (approximate percentage of full load)
 - Names of waste transporters and proposed disposal facilities
 - Quantity of import fill material in truckloads
 - Levels of safety protection

The HSE officer of the Contractor will communicate HSE requirements and tailgate safety meetings to all drivers and on-site workers. He will provide information related to contaminant descriptions, and requirements for the containment and cleanup of an accidental release along with basic safety requirements, name of personnel in charge, contact information and a map and directions to the nearest hospital.

7.8.6. Archaeological Chance Find Procedure

The purpose of these guidelines is to address the possibility of archaeological deposits, finds and features becoming exposed during earth excavation and ground altering activities associated with the development and to provide procedures to follow in the event of a chance archaeological find.

The objective of these procedures is to identify and promote the preservation and recording of any archaeological material that may be discovered at the construction site.

7.8.6.1. Procedure

During the Project development, all Contractors will be made aware of the presence of an on Site In-Charge who will monitor earthmoving and excavation activities. The
following procedure is to be executed in the event that archaeological material is discovered:

All construction activity in the vicinity of the find/feature/site will cease immediately;
The discovered find/feature/site will be delineated;
Record the find location and all remains are to be left in place;
Secure the area to prevent any damage or loss of removable objects;
The on-site HSE In-charge will assess record and photograph the find/feature/site;
The on-site HSE In-charge will undertake the inspection process in accordance with all Project health and safety protocols;
The Project Manager will inform the concerned provisional department i.e. Archaeology and Tourism Department Punjab;
In consultation with the statutory authorities, the on-site in-charge and Archaeologist will determine the appropriate course of action to take;
Finds retrieval strategy: All investigation of archaeological soils will be undertaken by hand; all finds, osteological remains and samples will be kept and submitted to the National Museum as required. In the event that any artefacts need to be conserved, the relevant licence (Licence to Alter) will be sought from the concerned authorities;
An on-site office and finds storage area will be provided, allowing storage of any artefacts or other archaeological material recovered during the monitoring process;
In the case of human remains, in addition to the above, the concerned authorities will be contacted and the guidelines for the treatment of human remains will be adhered to. If skeletal remains are identified, an osteo archaeologist will be made available to examine the remains;
Conservation: A conservator will be made available to the Project, if required;
The on-site archaeologist will complete a report on the findings; and
Once authorisation has been given by the responsible statutory authorities, the client will be informed when works can resume.

7.9. Training Program

Environmental training for construction period will form part of the environmental management system. The training will be directed towards all personnel for general environmental awareness as depicted in Table 8.3.

7.9.1. Objectives

The key objective of training program is to ensure that the requirements of the EMMP are clearly understood and followed throughout the Project.

7.9.2. Roles and Responsibilities

EO will primarily be responsible for arranging environmental training to all the Project personnel on potential environmental issues of the Project. Contractors will be
responsible to arrange training and ensure the presence of targeted staff. EO will prepare a Project specific training manual for this purpose. Contractors on their part will be required to provide induction training/briefing to all their staff before the start of any activity in the Project Area. This will be followed by training arranged by EO to all the targeted staff.

7.9.3. Training Log
A training log will be maintained by EO. The training log will include:

- Topic
- Date, time and location
- Trainer
- Participants

7.9.4. Training Needs Assessment
In addition to the training specified in the training log special/ additional trainings will be provided during the Project activity. The criteria to assess the need of training will be based on the following:

- When a specified percentage of staff is newly inducted in the Project.
- When any non-compliance is repeatedly reported, refresher training will be provided regarding that issue.
- Arrival of new Contractor/sub-contractor
- Start of any new process/activity

7.9.5. Training Material
EO will develop and prepare training material regarding the environmental awareness, EIA and EMMP. Separate training material will be prepared for each targeted staff and training program provided in Table 8.3 will be followed:

<table>
<thead>
<tr>
<th>Staff</th>
<th>Contents</th>
<th>Timing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selected management staff of LDA/PMU, concerned departments, SC</td>
<td>Environmental sensitivity of the Project area</td>
<td>Prior to the start of any major Project</td>
</tr>
</tbody>
</table>
Training for the operation period will be planned by LDA in future.

7.10. Environmental Management and Monitoring Cost

7.10.1. Environmental Management Cost
The proposed Project is at planning stage, therefore, costing for land acquisition, compensation and resettlement will be the sole responsibility of LDA and Revenue Department and compensation will be paid as per LDA Strategy.

Environmental management cost related to the mitigation measures of environmental parameters related to the location of camp site facilities, construction
activities, borrow materials, etc. will be the sole responsibility of the Contractor and he will take care of cost implications as it will be a part of his contract agreement.

Operation and Maintenance cost of the environmental mitigation infrastructure will be borne by the LDA as well as the concerned departments responsible for operation and maintenance of the relevant facilities.

7.10.2. Environmental Monitoring Cost
As the proposed project is at planning stage and no details of subprojects related with topographic surveys, design, number of contractors, sub-contractors, camp sites, etc. are available, so it is difficult to estimate the monitoring cost. However, as environmental monitoring at pre-construction stage and other in-house monitoring to be carried out by the Contractor(s), so it will be part of his contract agreement. SC will supervise the monitoring activities.

Similarly, because at this stage, location of facilities like contractor’s camp, asphalt plants, borrow areas, disposal pints, etc is not known, so cost for internal monitoring by LDA staff/PMU cannot be estimated. However, cost for Internal Monitoring to be carried out by the LDA staff/PMU will be allocated by the Project as per requirements prescribed in Table 8.1 and 8.2.

7.10.3. Training Cost
The Project training will be imparted at different stages of the Project at different staff levels. DAM will be mainly responsible for the arrangement of these trainings.

7.11. Mitigation Management Matrix (MMM)
Following is the Mitigation Management Matrix (MMM) for this project.
Table 7.4 Environmental Management Plan for Lahore Master Plan Project

<table>
<thead>
<tr>
<th>Sr. #</th>
<th>Parameter</th>
<th>Anticipated Impacts</th>
<th>Mitigation Measures</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Proposes urbanization and industrialization has the tendency to reduce the ground water recharge, as a significant part of the land has become impermeable</td>
<td>Measures should be taken to control demand by reducing per capita water availability by using water efficient technologies</td>
<td>CC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>With increasing water demand with increase in population the Lahore ground water level has been declining rapidly at the rate of 2.5-3.0 feet per year.</td>
<td>Housing societies should be made aware of the problem and their ground water extraction quota. Special recharge zones may be developed to facilitate ground water recharge.</td>
<td>LDA/PMU</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Existence of saline groundwater in the nearby areas of Raiwind and Kasur is a potential threat to the aquifer under the Lahore City.</td>
<td>Rainwater harvesting should be promoted and LDA should include in building control guidelines. All roof top rain water should be harvested deep underground or in underground tanks which then can be used for washing purposes.</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Ground Resources</td>
<td></td>
<td>Usage of high efficiency irrigation for agriculture use such as drip irrigation etc should be promoted</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water</td>
<td></td>
<td>In order to promote the culture of water conservation, a mentoring system should be introduced to charge water on a volumetric</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 7: ENVIRONMENTAL MANAGEMENT AND MONITORING PLAN

<table>
<thead>
<tr>
<th>Sr. #</th>
<th>Parameter</th>
<th>Anticipated Impacts</th>
<th>Mitigation Measures</th>
<th>Responsibility</th>
</tr>
</thead>
</table>
| 2 | Surface Water Resources and Quality | - The high pollution load is River Ravi has created overall negative impact on ground water as well as on agriculture which is being done on adjacent to the river and where river water is directly used for irrigation.
- With the potential to increase in the residential areas, housing schemes and industrial area, pollution level and quantities of wastewater is likely to increase many folds which may have negative impacts. | - Water quality challenges need to be addressed in an integrated manner and by adopting pollution prevention strategies by LDA along with other concerned agencies like EPA.
- Water pollution can be reduced by eliminating contaminants at source and should discharge the water that meets the NEQS.
- Waste Water Treatment plant should have installed on all the outfalls or drains that falls in to River Ravi. For this recommendation of Ravi River Front Urban Development Project or River Ravi Commision should be followed
- A sustainable pollution control strategy needs to be devised in order to reduce wastewater volumes.
- Proper education and awareness campaigns about the importance of water quality need to be | CC LDA/PMU |
Amendment in Master Plan for Lahore Division (The Project)

Environmental Impact Assessment (EIA) Report

Chapter 7: ENVIRO251NTAL MANAGEMENT AND MONITORING PLAN

<table>
<thead>
<tr>
<th>Sr. #</th>
<th>Parameter</th>
<th>Anticipated Impacts</th>
<th>Mitigation Measures</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Flood</td>
<td>▪ As project sites include two rivers i.e. Ravi and Sutlej and drains so there is chance of flood hazard to occur at the project site. The settlement which may subject to potential risk of flooding include Bhai Pheru, Bhucheki, Mandi Faizabad, Mor Khunda, Muridke and Syed Wala. ▪ The settlement Ferozwala is under potential threat of flooding due to Deg Nallah.</td>
<td>▪ Channelization and modification of River area from only where there is chance of flood hazard to occur. ▪ Develop large retention ponds in between river and flood prone identified areas. ▪ Dike/Bund should be developed precise to the identified flood porn areas along the side of the rivers in order to prevent flood.</td>
<td>DC LDA/PMU</td>
</tr>
<tr>
<td>4</td>
<td>Climate Change</td>
<td>▪ Due to global anthropogenic activities, Pakistan is 10 most vulnerable countries to climate change. Which will lead towards increasing variability of Monsoon, Increasing risks of Extreme Events (floods, drought etc...), Sever water and heat stressed conditions, Increase in deforestation and health risks.</td>
<td>▪ Pakistan Climate Change Policy and Framework needs to be implemented properly. ▪ Detail Climate Change venerability assessment study is need for Lahore Division. ▪ The infrastructure should be designed in respect to the extreme climate events in order to prevent urban flooding and urban heat island effect</td>
<td>LDA/PMU Ministry of Climate Change/ EPA</td>
</tr>
<tr>
<td>5</td>
<td>High Voltage Transmission Lines</td>
<td>▪ The high voltage transmissions line are passing and planned to be passed form some of the project areas. These transmissions line if not been buffered have variety of health impacts on human</td>
<td>The National Transmission and Dispatch Company (NTDC) should share the plan with Lahore Development Authority (LDA) for new transmission lines that are proposed to pass from the project area. The LDA will mark the area in master</td>
<td>LDA/SPU/NTDC/DC NTDC/LDA</td>
</tr>
<tr>
<td>Sr. #</td>
<td>Parameter</td>
<td>Anticipated Impacts</td>
<td>Mitigation Measures</td>
<td>Responsibility</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>--</td>
<td>--</td>
<td>----------------</td>
</tr>
<tr>
<td>6</td>
<td>Solid Waste</td>
<td>• 10,000 tons per day of municipal solid waste will be generated if not managed properly, will cause aesthetic problems and also produce odor along with the spread of many diseases. Similarly, medical waste produced from medical facilities etc. if not properly managed and disposed, it can result in injury by contaminated sharp material and infection with Hepatitis B, C, and HIV etc.</td>
<td>plan and adequate buffer zone at least 50 meters will be provided where the transmission passing or planned to be passed</td>
<td>LWMC/LDA/DC</td>
</tr>
</tbody>
</table>

The jurisdiction of LWMC should increase in other districts as well. The LWMC has already suggested landfill sites and transfer stations in Lahore and Kasur region. The Landfill Sites for other districts such as Nankana and Shiekhpura should also be studied and develop and included in the master plan.

The municipal waste should be managed in accordance with waste management hierarchy which is currently lacking in society and waste management company.

Medical waste need to be segregated and collected in house in accordance with the Hospital Waste Management Rules, 2005 and management given to LDA/EPA/Health Department.
Chapter 7: ENVIRONMENTAL MANAGEMENT AND MONITORING PLAN

<table>
<thead>
<tr>
<th>Sr. #</th>
<th>Parameter</th>
<th>Anticipated Impacts</th>
<th>Mitigation Measures</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>LWMC. The incineration of medical waste should be stopped</td>
<td>The public transport should have been improved through inter and intra city mass transit that can be faster, cheaper, and more relaxing. It also helps minimize environmental damage caused by excessive car use.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• The major growth of traffic volume in Lahore due to increase in urban population with a large number of vehicle owners and relative small capacity of roads causing multiple of problems like congestion, more energy consumption, pollution, traffic crashes, wastes time, delay, decreases productivity and imposes costs on society.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• In case of existing roads, if possible, widening should be carried out on both sides to minimize the cutting of trees.</td>
<td>DC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• A massive tree plantation programme shall be initiated, along the road, in public buildings and in proposed towns to</td>
<td>LDA/PMU</td>
</tr>
<tr>
<td>6</td>
<td>Transportation</td>
<td>• Various developmental activities will require clearing of vegetation and may threaten the existing fauna causing an adverse environmental impact.</td>
<td></td>
<td>TEPA/DC</td>
</tr>
<tr>
<td>b.</td>
<td>Ecological Environment</td>
<td></td>
<td></td>
<td>LDA</td>
</tr>
<tr>
<td>1</td>
<td>Flora & Fauna</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sr. # | Parameter | Anticipated Impacts | Mitigation Measures | Responsibility
---|---|---|---|---
1 | Land Acquisition | LDA will require land acquisition for different development related to the road infrastructure, public parks and public buildings etc. | • Compensate for the tree loss and to improve the existing landscape of the tract.
• Restoration and Rehabilitation Projects should be initiated to overcome the adverse impacts on flora and fauna.
• Utmost efforts should be made to minimize the acquisition of land by reducing the width of proposed roads or by improving the condition of the existing roads instead of their widening.
• For the acquisition of land, the affectees should be compensated as per Rules. Affectees should be either compensated on market value or they should be provided plots at proposed residential areas on equitable basis in case of disruption of their residential plots. | DC
LDA/PMU

c. Socio-Cultural Environment

1 | Land Acquisition | The contractors will require temporary acquisition of land for: | Land required for establishing contractor’s facilities including borrowing earth material (if required) and dumping excess spoil will be leased directly from private landowners by the contractor. | CC
SC/LDA

B. Development Stage

a. Physical Environment

1 | Land Resources | The contractors will require temporary acquisition of land for: | | |
Chapter 7: ENVIRO251NTAL MANAGEMENT AND MONITORING PLAN

<table>
<thead>
<tr>
<th>Sr. #</th>
<th>Parameter</th>
<th>Anticipated Impacts</th>
<th>Mitigation Measures</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Construction camps and workshop will be located at a minimum distance of 250 m from existing plantation and settlements, etc. This limit will be 500 m in case of batching plant.</td>
<td>Execution</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Prior to the commencement of construction activities, the contractor will submit a layout and location plan of the facilities to the Engineer-in-charge, LDA and PMU, for its scrutiny and approval.</td>
<td>Monitoring</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Main drainage courses should be lined to avoid soil erosion. Steep bed slopes should be avoided.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Barren lands or natural depressions should be used for dumping the excavated spoil material.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>All the lands to be identified for disposal of spoil may be acquired on temporary basis on lease after its needful, the land would be given back to owner.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The contractor will be required to train its workforce in the storage and handling materials, like furnace oil, diesel, petrol and chemicals. The contractor will be required to prepare training manual and module for all the construction related activities.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The contractor will be required to train its workforce in the storage and handling materials, like furnace oil, diesel, petrol and chemicals. The contractor will be required to prepare training manual and module for all the construction related activities.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Soil contamination by asphalt and other obnoxious material will be minimized by placing all containers in caissons or dumped into pits</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 7: ENVIRONMENTAL MANAGEMENT AND MONITORING PLAN

<table>
<thead>
<tr>
<th>Sr. #</th>
<th>Parameter</th>
<th>Anticipated Impacts</th>
<th>Mitigation Measures</th>
</tr>
</thead>
</table>
| 2 | Water Resources | - Surface water resources may be contaminated by spillage of fuel and chemical, or by dumping of waste material and effluents generated by the kitchens and toilets at construction campsites.
- Natural streams and hill torrents may be contaminated with chemicals, oil, lubricants, detergents, etc. through runoff.
- Soil erosion may occur at quarry areas, and it may contaminate the surface water resources if uncontrolled blasting is carried out.
- Cutting of shrubs and trees will also accelerate the soil erosion and land sliding. | - Availability of water for campsite facilities and construction purposes will be ensured by the Contractor prior to start of construction activities.
- The Contractors will be required to liaise closely with local communities to ensure that any potential conflicts related to common resource utilization for Project purposes are resolved quickly.
- The wastewater effluent from contractor's workshops and equipment washing-yards will be passed through gravel/sand beds to remove oil/grease contaminants before discharging it into surface water sources.
- Borrow pits and natural depressions with pre-laid impervious liners will be used to dispose of scarified/scraped material, and then covered with soil.
- At appropriate locations proper outfalls for the road side drains to divert surface run-off from the carriageway will be provided to prevent the flooding of streams and nullahs.
- A proper solid waste management plan should be followed with the disposal of solid waste in the borrow areas. |

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Execution</th>
<th>Monitoring</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CC</td>
<td>SC/LDA</td>
</tr>
</tbody>
</table>

Lined with impervious liners.
<table>
<thead>
<tr>
<th>Sr. #</th>
<th>Parameter</th>
<th>Anticipated Impacts</th>
<th>Mitigation Measures</th>
<th>Responsibility</th>
</tr>
</thead>
</table>
| 3 | Solid and Liquid Waste | ▪ Solid waste generated by the town is mainly being disposed of in nearby areas. Establishment of construction camps will enhance the solid waste generation. | ▪ Proper solid waste management system has to be prepared by the Contractor.
▪ Contractor should instruct his work force not to throw solid waste here and there. | CC SC/LDA |
| 4 | Ambient Air Quality | ▪ Air quality will be affected by dust and emissions from the construction machinery, and vehicular traffic during the construction activities. | ▪ The existing quarries sites will be used to borrow the aggregate materials.
▪ Asphalt plants should be located at least 500 m downwind from populated areas, wildlife habitats, and Contractors’ camp
▪ Asphalt and concrete batching plants should be equipped with dust control equipment such as fabric filters or wet scrubbers.
▪ Vehicles and other construction machinery should be properly tuned and maintained.
▪ Where dust emissions are high, will be reduced by a regular sprinkling of water. | CC SC/LDA |
| 5 | Noise Level | ▪ Noise generated by the construction machinery during the construction to affect the Project Area particularly the sensitive receptors.
▪ Noise generated by the construction machinery during the construction of | ▪ Thick tree plantation will be carried out towards the roadside, where there is enough space available between the boundaries of schools and roads.
▪ In order to avoid the noise pollution in the congested areas as | CC SC/LDA |
Chapter 7: ENVIRONMENTAL MANAGEMENT AND MONITORING PLAN

<table>
<thead>
<tr>
<th>Sr. #</th>
<th>Parameter</th>
<th>Anticipated Impacts</th>
<th>Mitigation Measures</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Flora</td>
<td>Various developmental activities such as widening of existing roads, construction of new roads, public buildings, shopping complexes, bus and truck terminals and other community development projects will involve cutting and leveling of land, including removal of trees and vegetation from the project areas. Cutting of large number of trees will also enhance soil erosion. Without the branches and leaves to break the velocity of downpour, the rain can quickly wash away the soil from even a gentle slope. Cutting down of trees also takes away the roots, which help in binding the soil together. Establishment of contractor’s camp and warehouses for storage of equipment material shall involve clearing of vegetation from the area. During the construction activities, workers may use trees as firewood to fulfill the camp’s requirements.</td>
<td>Efforts should be undertaken to keep the number of trees to be felled as minimum as possible. Along the roads to be widened or constructed, border line trees of the ROW on both sides shall be retained and if the trees are of suitable species. Similarly, in case of public buildings only those trees shall be felled, which come within the covered area of the proposed building plans. In case of public parks, only the trees which are deformed, ugly or belonging to undesirable species shall be removed. Camp sites shall be located in areas with minimum vegetation cover. Gas cylinders should be provided by the Contractor for kitchen and</td>
<td>CC</td>
</tr>
</tbody>
</table>

Note: The table above outlines the anticipated impacts and mitigation measures for various environmental parameters, including Flora. The responsibilities for execution and monitoring are assigned to specific entities, as indicated in the Responsibility column.
Chapter 7: ENVIRONMENTAL MANAGEMENT AND MONITORING PLAN

<table>
<thead>
<tr>
<th>Sr. #</th>
<th>Parameter</th>
<th>Anticipated Impacts</th>
<th>Mitigation Measures</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>heating requirements in the camps.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Avoiding dumping of dredged spoil in other ecological habitats adjacent to the site</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Protection of other habitats with fences and barriers</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Minimization of barging disturbance to wildlife</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Restoration of native vegetation on Railroad and Roadside verges and river and canal banks</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Identification and conservation of areas important for priority animal species</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Strategic planning for nature conservation through the restoration of ecological networks</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Urban agriculture and kitchen gardening</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>On account of various construction activities such as operation of heavy earth moving machinery and the noise generated through it, the fauna living in the area shall be scared and tend to move to the adjoining areas.</td>
<td>• There should be a clear order to the staff and labour to refrain from hunting, shooting or harassment of wildlife.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Fauna</td>
<td>• Avifauna shall be disturbed both in the urban and rural area development projects and scared away due to disturbance of habitat.</td>
<td>• Vehicular speed should be controlled.</td>
<td>CC SC/LDA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Personnel and labour hired by the</td>
<td>• Construction activities should be</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sr. #</td>
<td>Parameter</td>
<td>Anticipated Impacts</td>
<td>Mitigation Measures</td>
<td>Responsibility</td>
</tr>
<tr>
<td>-------</td>
<td>-----------------------------------</td>
<td>---</td>
<td>---</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Contractor shall have the tendency to catch or shoot the birds and animals.</td>
<td>avoided during the night to minimize impact on wild life.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Noise control measures should be enforced during the construction phase.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Blasting and other noise generating activities will be avoided during the night and in thickly vegetated areas.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Camps will be located at least 500 m away from the thickly vegetated areas.</td>
<td></td>
</tr>
<tr>
<td>c.</td>
<td>Socio-Culture Environment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Local Communities/Workforce</td>
<td>• During the construction stage, noise and dust problems will affect the health of locals.</td>
<td>Effective construction controls should be used by the Contractor to avoid inconvenience to the locals due to noise, smoke and fugitive dust.</td>
<td>CC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Similarly, general mobility of the locals will be disturbed during this stage of the project.</td>
<td>• Proper arrangements in the form of alternative routes should be made to ensure that mobility of locals should not be disturbed.</td>
<td>SC/LDA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Construction of the road as well as the widening of the nullah may create problems for the local residents as the drainage pattern may disrupt. Similarly, due to the disruption of the drainage pattern local’s shortest way to reach the Bank road will also affect.</td>
<td>• After consultation with the traffic police, a proper traffic management plan should be prepared roads specifically by the Contractor in order to avoid accidents.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• During the construction stage, improper traffic management can create problems of traffic flow and accidents on Domail-Chella Bandi and Bank roads.</td>
<td>• The Contractor will take care of the local communities water sources so that these should be escaped from destruction.</td>
<td></td>
</tr>
</tbody>
</table>
Environmental Impact Assessment (EIA) Report

Chapter 7: ENVIRONMENTAL MANAGEMENT AND MONITORING PLAN

<table>
<thead>
<tr>
<th>Sr. #</th>
<th>Parameter</th>
<th>Anticipated Impacts</th>
<th>Mitigation Measures</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>• Usage of the Community's common resources like potable water, fuel wood, etc. by the Contractor workforce may create conflicts between the community and the Contractor.</td>
<td>• The Contractor will take due care related to the disposal of construction material as well as solid waste disposal from the site.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Improper arrangement of the disposal of construction material may create problems for the local residents during the construction stage of the project.</td>
<td>• Blasting should be avoided near the settlements, and if unavoidable, it should be carried out during the fixed hours (preferably during the mid-day). The timing will be made known to all the people within 500 m from the blasting site in all directions and prior to blasting thorough inspection should be conducted.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Blasting near residential area like Gulshan Colony, Chella-Bandi Neelum road may create problems for the locals.</td>
<td>• Safety lookouts should be built to prevent people and vehicles from passing at the time of blasting.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Relocation/disturbance to existing utilities like electric poles, telephone poles, etc. may affect the routine life of the community.</td>
<td>• The management and use of blasting materials should be in strict conformity with the safety requirements.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Accidents/incidents during the construction stage may occur to the workers and the local community.</td>
<td>• Haul-trucks carrying concrete, aggregate and sand fill materials will be kept covered with tarpaulin.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Slippage of the Contractor’s staff while working at steep hill slopes may occur.</td>
<td>• In construction camps, clean food, water and sanitation facilities should be provided and Contractor should arrange first aid boxes at camps.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Loss of Livelihood</td>
<td>• During the construction stage, the business of shopkeepers working in the vicinity of proposed projects may be affected due to the non-</td>
<td>• During construction, accessibility of vehicles to the workshops should be ensured so that the business of shopkeepers will not</td>
<td>CC SC/LDA</td>
</tr>
</tbody>
</table>

522
Chapter 7: ENVIRO251NTAL MANAGEMENT AND MONITORING PLAN

<table>
<thead>
<tr>
<th>Sr. #</th>
<th>Parameter</th>
<th>Anticipated Impacts</th>
<th>Mitigation Measures</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>accessibility of vehicles.</td>
<td>be disturbed.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>During the construction stage, squatters sitting along nullah side road may be affected. In this way, the business of the squatters will suffer a lot.</td>
<td>Construction activities should be carried out during night time, as most of the markets are closed at sunset.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>During the construction stage, squatters sitting along nullah side road may be affected.</td>
<td>Affectees along with their children losing their agricultural land should be given employment opportunities on preference basis during the construction stage of the development of satellite towns.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Disruption of Cultural and Historical Properties</td>
<td>During the construction stage, a few archeological/historical sites may get affected.</td>
<td>The construction/development activities near such sites should be avoided. Similarly, by adopting protection measures, during construction, any negative impacts on Fort may be minimized. In this regard, it is recommended that the Contractor should prepare a site specific management plan.</td>
<td>CC</td>
</tr>
<tr>
<td>4</td>
<td>Cultural Issues</td>
<td>Induction of the foreign Contractor and outside labour may cause cultural issues with the local community.</td>
<td>The Contractor will warn the workers not to involve in any theft activities otherwise they will be penalized. Similarly, at the time of employing, the Contractor has to take care that the workers should be of good repute. The Contractor camp will be properly fenced and the main gate will be locked at night with a security guard to check the theft issues from the community side. To avoid the cultural issues, the Contractor will facilitate the local labour during the construction</td>
<td>CC</td>
</tr>
</tbody>
</table>
Sr. # | Parameter | Anticipated Impacts | Mitigation Measures | Responsibility |
|---|---|---|---|---|
| 5 | Gender Issues | • As the Project activities are being carried out within the residential/agricultural/commercial areas of the local community, as a result of it, women activities in the field may be affected during the construction stage particularly in case of satellite towns.
• The induction of outside Contractor labour may create social and gender issues due to the unawareness of local customs and norms. It may also cause hindrance to the mobility of the local women. | • The Contractor will have to select the specific timings for the construction activities so as to cause least disturbance to the local population particularly women.
• The Contractor will take due care of the local community and sensitivity towards local customs and traditions. | CC | SC/LDA |

Operation Stage

Physical Environment

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>Mitigation Measures</th>
<th>Responsibility</th>
</tr>
</thead>
</table>
| | | • Surface run-off from the impervious surface of the carriageway or slopes can aggravate the drainage problem.
• If cross-drainage structures are not adequately maintained and cleaned, natural nullahs tend to become choked.
• During the operation stage of all projects, noise and air pollution problems for the nearby residing community as well as for the area may increase.
• Spillage of oil and other lubricants at bus terminal and truck stand will contaminate the soil as well as surface water resources. | • For air and noise quality, a monitoring system will be established by LDA to ensure that ambient air and noise levels are within permissible limits.
• In order to cater the solid waste problems waste bins should be placed at different places in the satellite town.
• Wastewater treatment plant(s) should be constructed.
• In order to avoid the soil contamination, a fully paved area should be designated for vehicles maintenance in each bus | CD | LDA |
Environmental Management and Monitoring Plan

Sr. #, Parameter, Anticipated Impacts, Mitigation Measures, Responsibility

<table>
<thead>
<tr>
<th>Sr. #</th>
<th>Parameter</th>
<th>Anticipated Impacts</th>
<th>Mitigation Measures</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>terminal/truck stand.</td>
<td>In order to avoid air pollution generated by the incinerator suitable pollution control device should be used.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>It will be ensured by the LDA/Highway Department of roads/highways that storm water drains and road drainage system are periodically cleared to maintain water flow.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| b | Ecological Environment | **Flora & Fauna**
During operational phase; there may be**
 - Impacts of urban development on biodiversity
- Change in land use pattern
- Habitat degradation due to higher pollutants
- Habitat Fragmentation
- Bird Collisions and strikes
- Change in groundwater recharge capacity** | **To mitigate the operational impacts and for restoration of natural features; strategies and implementation plan should be adopted fallowed as**
- Use of native species
- EIA of all new developments
- Groundwater recharge
- Rain water harvesting
- Pollution control by following NEQS
- Solid waste management
- Wastewater treatment plants
- Urban agriculture and kitchen gardening
- Farm mechanization for increased agricultural productivity
- Tunnel Farming
- Green roofs and walls
- Policy Framework for green infrastructure
- Biotope/habitat opportunity mapping and making ecological action plans for** | CD |
<p>| | | | | LDA |</p>
<table>
<thead>
<tr>
<th>Sr. #</th>
<th>Parameter</th>
<th>Anticipated Impacts</th>
<th>Mitigation Measures</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Horticulture</td>
<td>As the fruit trees are in limited numbers, and mostly fruit is imported from other areas, there will be no significant impact of various development activities on fruit culture.</td>
<td>As the impacts are negligible on horticulture during the operation phase, no mitigation measures are required.</td>
<td>CD</td>
</tr>
<tr>
<td>4</td>
<td>Fishery</td>
<td>Increased population of the city due to various housing projects and increased inflow of tourist, will add to pollution of the rivers, causing a negative impact on fishery.</td>
<td>People should be imparted knowledge about hazards of pollution in the rivers and the resultant set back to fishery.</td>
<td>CD</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sign boards should be setup at important places, especially near the bridges, on the two rivers, informing people to refrain from throwing the litter in the river.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Proper waste management techniques should be used instead of throwing the waste into rivers.</td>
<td></td>
</tr>
<tr>
<td>c. Socio-Cultural Environment</td>
<td></td>
<td>Increased number of visitors may become a threat to the available natural resources. This may also create uneasiness to the locals.</td>
<td>The visitors should be briefed about not distorting the natural resources.</td>
<td>CD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Noise generated by vehicles will further increase which will disturb the local communities, school staff and students, etc. existing near roads.</td>
<td>Traffic police should ensure that vehicles are properly tuned up to minimize the air and noise pollution.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fire hazards may increase in shopping complexes and parking areas.</td>
<td>Fire fighting arrangements should be provided in the operation stage of shopping complexes and parking plazas and bus terminals, etc.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>The arrival of affectees of different</td>
<td>To resolve any kind of disputes</td>
<td></td>
</tr>
</tbody>
</table>
Anticipated Impacts and Mitigation Measures

<table>
<thead>
<tr>
<th>Sr. #</th>
<th>Parameter</th>
<th>Anticipated Impacts</th>
<th>Mitigation Measures</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>projects under LDA to the proposed areas may create a positive impact on the local business. However, this may become a threat to the available natural resources including water, fire wood, etc.</td>
<td>during operation stage between the affectees and people of planned areas, a committee may be organized consisting of representatives from areas, local administration and public representatives.</td>
<td>Execution</td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ There may be some cultural conflicts due to the arrival of affectees of different projects under LDA to the proposed satellite towns. However, the diffusion of cultures may result in some sort of development in the form of language, dress, education, life style etc.</td>
<td>▪ Proper arrangement of the cleanliness of toilets and waiting rooms should be provided for the passengers at bus terminals.</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 8

STAKEHOLDERS CONSULTATION

Public & Stakeholders consultation is a systematic process, which provides an opportunity for planners, citizens, managers and selected representatives to share their experience, knowledge and concerns and perceptions about any proposed development. The objectives of the public consultation for the proposed Project are to:

- Share information with the stakeholders’ on the proposed Project works and their expected impact on the socio-economic environment of the Study Area.

- Understand the stakeholder’s concerns regarding the various aspects of the Project, including the existing condition of the Study Area, upgrade requirements, and the likely impacts of the construction related activities and operation of the Project.

8.1. IDENTIFICATION OF STAKEHOLDERS

First setup for the stakeholder consultation is the identification of stakeholders. LDA is the Project Proponent. The project has both primary as well as secondary stakeholders. As per definition, stakeholder is an entity which is concerned with the proposed project in any way. Direct stakeholders are those entities which are directly concerned with the project.

The primary stakeholders include in the project are the affected households/persons according to the loss of assets and conditions, Provincial Environmental Protection Department and District level concerned departments whereas the secondary stakeholders include the public and private agencies involved in the implementation of the project.

Following is the list of major stakeholders of the Project:
- Water and Sanitation Agency (WASA)
- Environmental Protection Agency (EPA-Punjab)
- Forest Department
- River Ravi Commission
- World Wildlife Fund (WWF)
- Lahore Waste Management Company (LWMC)
- Parks and Horticulture Authority (PHA)
- Lahore Chamber of Commerce
- Urban Unit Punjab
- Community residing in towns of Project Area
- Small industrial Associations in Project Area

Twenty Five (25) comprehensive consultations including scoping sessions and focus group discussions were held. In addition, a few consultations were also held in the form of detailed interviews of individuals including men and women at project area. Table-9.1 provides the information about consultations carried out at different locations with the community and government stakeholders including date, venue and number of participants.

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Date</th>
<th>Venue</th>
<th>No. of Participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22-12-15</td>
<td>Community at Sultan Park- Muredke</td>
<td>07</td>
</tr>
<tr>
<td>2</td>
<td>22-12-15</td>
<td>Community at Sach Soda Farooqabad</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>22-12-15</td>
<td>Community at Feroz wattwan</td>
<td>04</td>
</tr>
<tr>
<td>4</td>
<td>28-12-15</td>
<td>Community at Mala Ram Lahore South East</td>
<td>05</td>
</tr>
<tr>
<td>5</td>
<td>29-12-15</td>
<td>Community at Hera Coat Kasur</td>
<td>03</td>
</tr>
<tr>
<td>6</td>
<td>04/1/16</td>
<td>Centaury Paper and Board Mill – Industry- Kasur</td>
<td>03</td>
</tr>
<tr>
<td>7</td>
<td>04/1/16</td>
<td>Panther Tyres – Industry- Lahore Shiekhpura Road</td>
<td>03</td>
</tr>
<tr>
<td>8</td>
<td>1/1/16</td>
<td>Ahmad Rafy Alam – Advocate and Sectary RRC</td>
<td>01</td>
</tr>
<tr>
<td>9</td>
<td>19/1/16</td>
<td>Prof. Dr. Obaid- UET Lahore</td>
<td>01</td>
</tr>
<tr>
<td>10</td>
<td>18/1/16</td>
<td>Dr Nasir and team- Urban Unit Punjab</td>
<td>06</td>
</tr>
<tr>
<td>11</td>
<td>9/1/16</td>
<td>GM Operation Office – Lahore Waste Management Company</td>
<td>04</td>
</tr>
</tbody>
</table>
8.2. MAIN VIEWS AND CONCERNS OF THE STAKEHOLDERS

During consultations, the people of the Study Area expressed their views and concerns about the Project. Findings of the consultations and main views and concerns about the Master Plan Lahore Division are summarized below:

8.2.1. Views and Concerns of Lahore Waste Management Company

The Project was discussed with Asif Iqbal (GM-Operation-LWMC) the project briefing was given to LWMC staff and some recommendations of EIA report related to solid waste management and landfill sites was discussed. The GM operation LWMC mentioned the following:

- LWMC already investigated and studied and proposed two new landfill sites (other than Lakhodair and Mehmood Boti) in Lahore and one in Kasur. These landfill sites should be marked on master plan.
- Regional landfill sites should be developed for Lahore Division with transfer stations in districts.
- New landfill sites should be explored for Shiekhpura and Nankana District.
- Hospital Waste Management Study is also in process with advance technology of disposing hospital waste through auto claving.
- Hospital Waste Management should be given to LWMC in consultation with Health Department.
- Some projects from waste to energy, bio gas generation, electricity from landfill gas, Compost from organic waste have already in operational phase from which there will ultimate help in managing solid waste of cities.

The landfill sites and transfer station that LWMC has proposed has been marked on map and attached as Annex I

8.2.2. Views and Concerns of Urban Unit Punjab

The Project was discussed and briefed to Dr. Nasir (Chairman Urban Unit) and his team, who mentioned the following concerns.

- The per capita water requirement for master plan till 2035 should reduce from 80 gallons per capita to 35 gallons per capita.
• The sewerage and drainage should be separated. The collected drain water then used as ground water recharge and other purposes like gardening, car washing and cleaning.
• Slum areas need to address in master plan with proper planning.
• Ground recharge should be done through rain water harvesting.
• Stick enforcement for the proposed urban plans should be ensured to stop Urban Sprawl.

8.2.3. Views and Concerns of Community Sultan Park-Muredke

• The project is very much beneficial as we could also have facility of developed infrastructure like big city. With the implementation of master plan Lahore division 2035 brings prosperity in our area.

8.2.4. Views and Concerns of Community at Sach Soda Farooqabad

• The project is good as we got the basic facilities, but Govt. should also look to provide job opportunity to unemployed youth of this area.

8.2.5. Views and Concerns of Community at Mala Ram Lahore South East

• The project is good as it will bring infrastructure in our area which ultimate increase the price of our land.

8.2.6. Views and Concerns of Centaury Paper and Board Mill – Industry- Kasur

The project is good in terms of notified industrial area. The only concern is to separate our industrial area with residential area with the buffer zone. The residential area on back of our industry keeps on increasing and one day it will touch with our boundary wall which then becomes problem to the industry and residencies as well.

8.2.7. Views and Concerns of Panther Tyres – Industry- Lahore Shiekhpura Road

The project is good but residential area should be separated from industrial area. The Lahore-Shiekhpura road belongs to the industrial area but still at this road there are approved housings. This practice should have been stopped.
8.2.8. Views and Concerns of Dr. Obaid UET Lahore

The master plan should be evaluated based upon the yield in agriculture fields. The lower yield areas should be chosen for the development.

The climate change impacts have been evaluated based upon temperature increase from last 50 years.
9.1. Conclusions and Recommendations

EIA Study was conducted for the proposed Master Plan for Lahore Division, which included field surveys, investigations, verification and possible quantification of anticipated impacts together with their mitigation measures.

By the development and implementation of the Master Plan for the Lahore division, though there will be a relief for availability of planned facilities to the locals. The project is very much needed in order to have orderly future urban growth which will reduce pressure on our natural resources. Planned urban development has variety of positive impacts including intact natural resource with urban development, Public utilities and infrastructure facilities at their own places rather coming towards main district (Lahore), enhanced green areas through housing and building control guidelines, aesthetic uplifting, improved industrial sector and non-quantifiable socio economic benefits.

Apart from the positive impacts of the project, it will also generate some negative impacts during the planning, implementation and operational stages. Most of construction impacts are of temporary nature. These temporary impacts can be avoided or mitigated by adopting suitable mitigation or remedial measures as mentioned in this report. However, following are some major significant impacts that require specific targeted mitigation measures.

9.1.1. Ground Water

The sole supply of water to the Lahore Division depends upon the abstraction of groundwater. The use of ground water in residential commercial and industrial sector with increase in population up till 2035 will result in decline in ground water aquifer with threat to deplete the ground water resource. Further the paved surfaces will
ultimate reduce the ground water recharge. The impact can be mitigated by reducing per capita water availability by educating households to use water more wisely, provision of surface water supply after treatment, water usage metering system, efficient irrigation practices, rain water harvesting in residential, commercial and industrial units and large lakes in parks to facilitate the ground water recharge.

9.1.2. Surface Water Resources and Quality

With the potential of increase in population with development of residential areas, housing schemes and industrial areas in districts of Lahore division, the pollution level and quantities of wastewater is likely to worsen manifolds which may have direct negative impact on our surface water resource (River Ravi and Sutlej) and indirectly on agriculture, ground water and human health. The river Ravi is already converted in to the shape of sewage carrier due to large quantities of waste water being received from urban area. The situation would become more intense if specific solutions regarding waste water treatment are not executed. The impact can be mitigated by adopting pollution prevention strategies by LDA along with other concerned agencies like EPA. Industries have to install wastewater treatment plant at source and should discharge the water that meets the NEQS being enforced by the EPA, Wastewater treatment plant should be installed on all the outfalls or drains that falls in to the river Ravi for that recommendations of River Ravi Commission should be followed which include development of constructed wetlands on drains before discharge into the river Ravi and provision of septic tanks in new housings, the recommendation of WWTP study for Ravi Riverfront Urban Development Project (RRUDP) should also be followed which include establishment of WWTP on all major outfalls.

9.1.3. Flood

Following settlements of project area have a potential risk of flooding in river Ravi for 100 years return period in accordance with short term hydrological study attached as Appendix III. The settlements including Bhai Pheru, Bucheki, Mandi Faizabad, Mor Khunda, and Syed Wala may be subjected to flooding. The settlement Ferozwala is under potential threat of flooding due to Deg Nallah. The settlement Muridke is under potential threat of flooding due to Nikki Deg Drain. The flood hazard can be mitigated by channelization and modification of river area from only where there is chance of
flood hazard to occur, develop large retention ponds in between river and flood prone identified areas which also facilitate ground water recharge and dikes/bund should be developed precise to the identified flood prone areas along the side of the rivers.

9.1.4. Climate Change

Pakistan is rated among the top 10 most vulnerable countries to climate change. The major concerns of climate change in reference to our project site areas are increased variability of Monsoon, increased risks of Extreme Events (floods, droughts, cyclones, extreme high / low temperatures etc.), severe water- and heat-stressed conditions in arid and semi-arid regions leading to reduced agricultural productivity, Increase in Deforestation with Loss of Biodiversity and health risks. The climate change poses the serious threat in project areas if not mitigated or without an adaptive capability for the extreme climatic events. The impact can be mitigated by implementation of Climate Change Policy and its Framework at sectorial, institutional and departmental level on urgent basis. Detail Climate Change Vulnerability Assessment related to the Lahore Division is also needed.

9.1.5. Land Resources

The LDA will require land acquisition for widening and improvement of the existing roads, development of bypass roads for various existing town/villages etc, development of inter town and villages roads, development of new main roads, connecting roads, accessibility roads, sewerage systems including pumping stations, disposal stations, treatment plants, development of recreational areas, public utilities, buildings, administration buildings, toll stations and weighing stations. The land acquisition should be done in accordance with the land acquisition act 1897 and its amendments. Compensation against land, structure, disturbance allowance should be provided to the affectees as per market price

9.1.6. High Voltage Transmission Lines

The high voltage transmissions line are passing and planned to be passed form some of the project areas. These transmission lines if not been buffered, have variety of health impacts on humans. The short term health impacts include Headaches, Fatigue, Anxiety, Insomnia, Prickling and/or burning skin, Rashes and Muscle pain. The long term health impacts include risk of damaging DNA, risk of
cancer, risk of leukemia, risk of neurodegenerative disease and risk of miscarria. The impact can be mitigated by providing adequate buffer zone of at least 50 meters from High Voltage Transmission Line.

9.1.7. Transportation

The infrastructure facilities such as under passes, wide roads, bridges, signal free corridor etc. have been made in Lahore but increasing population with traffic volume rapidly overburden these facilities and vigorously worsen in future also. The situation will be in worst position if long-term planning of transportation in master plan has not been done. The major impact would be seen on our economy if high efficiency transport system will not be designed for Lahore division. The impact can be mitigated by utilizing and relaying on public transport that should have been improved through inter and intra city mass transit, increasing parking fee to discourage private cars and improve bicycle and pedestrian facilities and programs.

9.1.8. Solid Waste

About 10,000 tons/day of municipal solid waste will be generated from Lahore division that if not managed properly will cause aesthetic problems and also produce odor along with the spread of many diseases. Similarly, medical waste produced from medical facilities etc. if not properly managed and disposed, it can result in injury by contaminated sharp material and infection with Hepatitis B, C, and HIV etc. The impact can be mitigated by increasing jurisdiction of Lahore Waste Management Company from Lahore district up to Lahore divisional level. Develop regional based landfill sites, adopting waste management hierarchy, not to mix medical waste with municipal waste and medical waste need to be segregated separately in accordance with the Hospital Waste Management Rules, 2005 and should be given to LWMC for safe disposal in Landfill site after autoclaving. The incineration of medical waste should have been stopped.

Apart from above other recommendation related to the planning and implementations of master plan are given as under:-

- Master Plan should check trends based on the past and present practices and should device strong legislation for the implementation of the proposed land
uses in the Master Plan. In this regards, recommendation for the ineffective implementation of the previous IMPL should be kept in the mind.

- Major loss by the implementation of this master plan is that of agricultural land that will negatively impact food supply and can result in high prices of food items from being supplied from distant places. This loss can just only in part compensated by promoting urban agriculture and kitchen gardening. But this will has to be incorporated in the developmental policy of the proposed project at the planning stage. It is also recommended that for the compensation of the lost agricultural land there is a need to increase agricultural production by using modern technology and seeds of high yielding crop varieties. Farmers in the area shall be provided assistance in getting loans for the purchase of farm machinery and seeds.

- Living roofs and walls are other options to adopt which are important components of the sustainable urban design. The roof gardens provide beautiful and pleasant environment to live and work, to help improve air quality, especially in populated areas. Green roofs of buildings perform the important functions of trapping dust, producing oxygen and providing cooling affect in the hot summer months leading to energy conservation. They also provide habitat for the urban biological diversity and are one of the ways to ensure food security.

- Habitats and species of conservation value shall be protected that include many reptile and bird species. It is therefore important to set aside areas that act as their breeding grounds or nesting habitats. It is strongly recommended that areas along both banks of River Ravi and River Sutlej shall be acquired and declared as buffer zones to protect the native wildlife from human onslaughts and disturbance. In this regard help can be taken from experts of Wildlife Department and WWF-P.

- Native species restoration should be carried out to enhance biodiversity and conservation in the area.

- Incentive for the locals involved in the agriculture activities should be given in terms of facilities so that the shifting trend from agriculture to other business should not take pace.
Chapter 9: CONCLUSIONS AND RECOMMENDATIONS

- Affectees along with their children losing their agricultural land and livelihood should be given employment opportunities on preferential basis during the construction stage and operational stage.

- The vulnerable social groups including the women headed households, widows, poor people, etc. losing their residences and agriculture land should be given compensation on replacement cost basis and separate business opportunity should be provided to them.

- It is suggested that at policy level that local government should support the use of alternate energy resources for the individual units such as housing schemes, industrial states, use of solar lights for the street lights etc.

- It is recommended that mitigation measures proposed in impacts and mitigation chapter and EMMP should be adequately implemented at design, construction and operation stages.

- Recommendations of Ecological Study should also be followed during the detail design, implementation and operation of the project

After the detail environmental assessment, it is concluded that the project is environmentally feasible at proposed site only if the mitigation measures suggested in this EIA report are adopted during planning, construction and operational stages of the project. The mitigations suggested in the report are sufficient to successfully complete and run the project in an environment friendly manner.

Further, the key studies which need to be carried out at planning level are given as under;

- Climate Change Vulnerability Assessment
- Ground Water Quality and Aquifer Assessment
- Surface water Quality Assessment and its use
- Hydrological Study and Modeling of River Ravi
- Rainwater harvesting potential and implementation
- Detail Socio- Economic Study of Project Areas
- Social Impact Assessment
- Transportation and Modeling Study
- Action Areas Plans and Subject Plans for each sector of development should also be prepared
APPENDICES
Appendix-I

Ecological Study Report
ECOLOGICAL STUDY REPORT FOR
MASTER PLAN FOR LAHORE DIVISION, PROJECT
DISTRICTS LAHORE, KASUR, NANKANA SAHB & SHEIKHUPURA

Solution Environmental and Analytical Laboratory - SEAL
MASTER PLAN FOR LAHORE DIVISION PROJECT
Districts Lahore, Kasur, Sheikhupura & Nankana Sab

Ecological Study Report
Lahore Development Authority (LDA), Lahore.
Acknowledgements

Help and support provided by the local community members and Departments of Wildlife, Forest and Fisheries for conducting this ecological study is greatly acknowledged. We are highly thankful to Mr. Waqas Ali, Lecturer, Department of Wildlife, University of Veterinary and Animal Sciences, Lahore for his expert advice in finalizing the lists of herpetofauna.
EXECUTIVE SUMMARY

Master Plan for Lahore Division includes districts of Lahore, Nankana Sahib, Kasur, and Sheikhupura which referred to as the Project Area. Total Project area includes forty eight different sites allocated in four districts. This project is important in a way that urbanization is happening around the globe and in such case if the same urban expansion is planned and organized it will result in sustainable living approach. With world population forecast to increase from 7 billion today to more than 9 billion by 2050, humanity’s urban footprint will take up 1.5 million more square kilometers of land by 2030 at current rates. Cities place tremendous strains on natural resources and the environment. New ways of thinking about how to make cities more self-sufficient and sustainable, along with advances in a wide range of technologies and heightened environmental awareness is leading to a reformulation of urban planning and development. In such scenario the current project deals with the planning of expanding living areas sustainably.

This ecological study is carried-out as part of an Environmental Impact Assessment (EIA) to gather ecological data of the said project. The proposal may have an impact on the natural environment including existing fauna, flora and their wild habitats. This assessment includes both aquatic and terrestrial ecology of the study area. The guiding principle for this part of the EIA report is to conserve major habitats of flora and fauna in the area. This section of the report includes identification, prediction and evaluation of existing habitats, flora and fauna. The baseline ecological study was of 30 days in which tours of the area were arranged to assess plant and animals in different times of the day present in different habitats. After a vigorous literature review, certain criteria were established to evaluate animal and plant species in different habitats. Keeping in view international and national legislation, protection status of species found in all habitats was determined. This helped in proposing conservation of respective habitats of protected species. Significantly many birds and reptile species were found to be protected as they were either under threat as per IUCN Red list (1 bird and 2 reptile species) or were protected under Punjab Wildlife Act (22 bird and 6 reptile species).
species). One bird (Otus bakkamoena) and 5 reptile species (Ptyas mucosa, Xenochrophis piscator, Varanus bengalensis, Pangshura smithii and Lissemys punctata Adersonii) are protected either under CITES appendix I, II or III. Two mammal species (Felis chaus and Herpestes mungo) are also protected under Punjab Wildlife Act. Project sites had significantly higher biodiversity richness which was 101 species of fauna and 146 species of flora. Fauna includes 70 species of birds, 13 of mammals, 15 of reptiles and 3 of amphibians. None of the native plant species are under threat as per IUCN Red list but they are under serious threat locally as they have been exterminated due to habitat loss, overuse or are replaced with other more economically important species. Same is the case with native fish species among that only Mully (Wallago attu) is ‘near threatened’ in IUCN Red Data Lists but there are other fish species like Rita rita (Ravi Khagga) that also suffer from serious threat and decline due to over exploitation, water pollution and introduction of invasive species. The potential ecological impacts from the project’s planning, implementation (construction and operation) were identified and their possible mitigation measures are proposed for enactment of habitat and species. The negative impacts expected from the implementation, construction and operation of this Master plan are; loss of agricultural land, loss of biodiversity, habitat loss and fragmentation, water, noise, air and light pollutions and change in groundwater recharge capacity. The positive impacts include increased economic activity, livelihood opportunities, reducing pressure on other megacities like Lahore, better transportation, education, healthcare, sewer and municipal water supply facilities, increased land and property values and initiation of secondary development. Negative impacts of this development can be mitigated by; minimizing biodiversity loss by developing Green Infrastructure, restoration of native vegetation on railroad and roadside verges and river and canal banks, Identification and conservation of areas important for priority animal species, planning for nature conservation through the restoration of ecological networks, urban agriculture and kitchen gardening. It is strongly recommended from this ecological impact assessment report that (i) the biodiversity should be conserved by protecting species and their habitats (ii) secondly more green areas should be
developed with native plants as a compensation of lost vegetation (iii) there will be dire need to develop infrastructure and policies to reduce water, noise, light and solid waste pollutions (iv) design ground water recharge and rain water harvesting mechanisms and to (iv) promote urban agriculture for assuring food security.
TABLE OF CONTENTS

Acknowledgements .. I
EXECUTIVE SUMMARY ... II
TABLE OF CONTENTS .. V
LIST OF FIGURES .. VIII
LIST OF TABLES .. IX
CHAPTER 1 .. 1
BACKGROUND & INTRODUCTION .. 1
1.1. Objectives of the Ecological Impact Assessment Study ... 3
1.2. Methodology to conduct Ecological Impact Assessment ... 3
1.3. Legislation and Guidelines .. 3
 1.3.1. International Legislations .. 4
 1.3.1.1. Ramsar Convention ... 4
 1.3.1.2. Bonn Convention .. 4
 1.3.1.3. Convention on Biological Diversity (CBD) .. 4
 1.3.1.4. IUCN Red List of threatened species ... 4
 1.3.1.5. CITES .. 5
 1.3.2. National Legislation, Acts and Rules ... 5
1.4. Study Team ... 5
CHAPTER 2 .. 6
OBSERVATIONS AND INTERPRETATIONS .. 6
2.1. Ecological Baseline Study of the proposed project ... 6
 2.1.1. Project Study Area ... 6
 2.1.2. Steps in Ecological baseline study ... 6
 2.1.2.1. Detail of different Habitats in the project area ... 6
 2.1.2.2. Survey for the Floral Inventory and other details in the project area 9
 2.1.2.3. Survey for inventory of faunal diversity in the project site 18
 2.1.3. Protection status of all Animals found in the area ... 34
2.2. Assessment of Ecological Impacts from the planning of new Development in the project area ... 36
 2.2.1. Implementation and construction impacts .. 37
 2.2.1.1. Permanent loss of agricultural land/orchards ... 37
 2.2.1.2. Removal of native vegetation and habitat loss ... 37
 2.2.1.3. Effects of land conversion on rural communities ... 37
 2.2.1.4. Habitat damage .. 38
 2.2.1.5. Wildlife disturbance and Noise pollution .. 38
 2.2.1.6. Soil erosion ... 38
 2.2.2. Operational impacts ... 38
 2.2.2.1. Impacts of urban development on biodiversity .. 38
 2.2.2.2. Change in land use pattern .. 39
 2.2.2.3. Habitat degradation due to higher pollutants ... 39
 2.2.2.4. Habitat Fragmentation ... 40
 2.2.2.5. Bird Collisions and strikes .. 40
 2.2.2.6. Change in groundwater recharge capacity ... 41
Table of Contents

2.2.3. Social Impacts of urban growth due to new development and planning...41

2.3. Mitigation Measures to lessen the impacts of development...42

2.3.1. Impact avoiding/ minimizing...43

2.3.1.1. Minimizing biodiversity loss by developing Green Infrastructure 43

2.3.1.2. Green Infrastructure (GI)...43

2.3.1.3. Avoiding dumping of dredged spoil in other ecological habitats adjacent to the site:.................................46

2.3.1.4. Protection of other habitats with fences and barriers:46

2.3.1.5. Minimization of barging disturbance to wildlife:46

2.3.2. Restoration and Compensation ...47

2.3.2.1. Trees Plantation close to schools and hospitals47

2.3.2.2. Identification and conservation of areas important for priority animal species ...47

2.3.2.3. Strategic planning for nature conservation through the restoration of ecological networks.................................48

2.3.2.4. Urban agriculture and kitchen gardening48

2.3.3. Conclusion and Recommendations ..49

2.3.3.1. Use of native species...49

2.3.3.2. EIA of all new developments..49

2.3.3.3. Groundwater recharge..49

2.3.3.4. Rain water harvesting..50

2.3.3.5. Pollution control by following NEQS50

2.3.3.6. Solid waste management...50

2.3.3.7. Wastewater treatment plants ..50

2.3.3.8. Urban agriculture and kitchen gardening50

2.3.3.9. Farm mechanization for increased agricultural productivity50

2.3.3.10. Tunnel Farming...51

2.3.3.11. Green roofs and walls..51

2.3.3.12. Policy Framework for green infrastructure (GI)51

2.3.3.13. Biotope/ habitat opportunity mapping and making ecological action plans for individual cities52

2.3.3.14. Disturbance to migratory species..53

2.3.3.15. Habitat and species conservation.......................................54

2.3.3.16. Avoiding bird collision and strikes......................................54

2.3.3.17. Restoration of native vegetation ..55

2.3.3.18. Reducing the effects of light pollution on biological diversity55

2.3.3.19. Reducing ecological footprint ...56

LITERATURE CONSULTED ...58

APPENDICES ..63

Appendix i I ...64

CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA ..64

Appendix i II ...68
Table of Contents

THE PUNJAB WILDLIFE (PROTECTION, PRESERVATION, CONSERVATION AND MANAGEMENT) (AMENDMENT) ACT, 2007 68

PLATES ... 74
Plate 1 ... 75
Plate 2 ... 76
Plate 3 ... 77
Plate 4 ... 78
Plate 5 ... 79
Plate 6 ... 80
Plate 7 ... 81
Plate 8 ... 82
Plate 9 ... 83
Plate 10 ... 84
Plate 11 ... 85
Plate 12 ... 86
Plate 13 ... 87
Plate 14 ... 88
LIST OF FIGURES

Figure 1.1 Relationship between society, urban technical system and environment...2

Figure 2.1 Birds of study area..28
Figure 2.2 Birds of Study Area..30
Figure 2.3 Birds of study area..31
Figure 2.4 Birds of Study Area..32
Figure 2.5 Mammals of Study Area...33
Figure 2.6 Reptiles of Study Area..34
Figure 2.7 Amphibians of Study Area...34
Figure 2.8 Impacts of Urban Development on Biodiversity...39
Figure 2.9 Pattern of Biodiversity loss and gain (Source: UNEP Global Environment 1997)..43
Figure 2.10 Examples of green urban infrastructure..45
Figure 2.11 Examples of some of the green infrastructures present at the study site...46
Figure 2.12 The components of ecological networks (Town & Country Planning Association 2012)..48
Figure 2.13 Urban agriculture and kitchen gardening...49
Figure 2.14 Railroad and roadside vegetation provides excellent corridors for the movement of biota and increase connectivity among landscape patches...53
Figure 2.15 Useful and other types of light from a light source http://www.askaboutireland.ie/enfo/irelands-environment/noise/light/56
Figure 2.16 Fixtures that enhance and reduce light pollution (Source: http://victoria.rasc.ca/night-lighting/).................................56
LIST OF TABLES

Table 2.1 The Ecological Study Team ...5

Table 2.1 Species richness of fauna and flora of the habitat types in the study area...9
Table 2.2 List of plant species identified from different habitats................11
Table 2.3 List of aquatic plant species identified from different habitats17
Table 2.4 Status of plant species recorded within the study area17
Table 2.5 Overall species richness of all plants recorded within the study area...18
Table 2.6 List of mammals recorded within the project area20
Table 2.7 List of Bird species recorded within the project area20
Table 2.8 List of Reptile and Amphibian species recorded within the project area..25
Table 2.9 List of fish species found in the rivers of the project area.......26
Table 2.10 Status of Mammals Species recorded within the Study Area...35
Table 2.11 Status of Amphibian Species recorded within the Study Area ...35
Table 2.12 Status of Reptile Species recorded within the Study Area35
Table 2.13 Status of Birds Species recorded within the Study Area36
Table 2.14 Impacts of urban growth due to new development and planning41
Table 2.15 Objectives of city ecological action plan.................................53
Table 2.16 Detail of migratory birds in the project area shown in table below ...53
It is well said that "cities are ecosystems of people and infrastructure" with always increasing population of Lahore, it has become an area which is "land starved" in focusing future population. The current Lahore Division Master Plan is a project that envisioned pressure of urbanization and future development in this area. There is huge need to better plan and develop our urban areas; 50% of the world's population is considered urban and urban areas are increasing in their size, density and number. A key problem in urban planning is that the rate of development far exceeds the rate of research output and policy implementation, meaning that urban development often ignores its full environmental impact.

Various concepts have been coined to describe how complex interactions can impact on urban living as shown in Figure 1. The 'urban metabolism' refers to the flows necessary to satisfy the needs of those living in cities. 'Grey infrastructure', such as roads, metros, railways, buildings and utilities, determines a city's layout. Yet without integrated urban planning, this urban 'engineering' generates soil sealing, fragments natural systems, increases mobility and associated pollution, energy and material consumption. 'Green infrastructure' is a way to work with nature to provide social, ecological and economic benefits to the urban population such as air filtration, temperature regulation, noise reduction, flood protection and recreational areas. The high concentration of people and economic activities in cities cause environmental pressures. Yet cities can be planned, designed, managed and governed in an increasingly efficient way.
With half the world's population now living in urban regions, the future of cities is arguably the most important social and environmental issue of the twenty-first century. The design and planning of green spaces in cities has been central to urban development since the beginning of civilization. Planning which will focus urban ecology has a sustainable way to go. Keeping this in view, Ecological assessment of the Lahore Division was carried-out which includes four Districts namely; Lahore, Kasur, Sheikhupura and Nankana Sahab. The Project site is geographically located between 30°38'31.93"E to 32°03'37.99" and 73°17'37.86" to 74°42'5.83". This ecological impact assessment was carried-out as part of Environmental Impact Assessment (EIA) to gather ecological data of the Lahore Division Project that may have impacts on the natural environment including existing fauna, flora and wildlife habitats. This assessment includes both aquatic and terrestrial ecology of the study area. The guiding principle for this part of the EIA report is to conserve major habitats of flora and fauna in the planning and management of the area. This chapter includes identification, description and evaluation of existing habitats of study area (Fig. 1). The baseline ecological study was carried-out in 30 days and included the assessment of different habitats in the project area and identification of diversity of local flora and fauna. The potential ecological impacts from the project's planning and implementation were identified and possible mitigation measures are proposed for enactment of habitat and species present at the study site.
1.1. Objectives of the Ecological Impact Assessment Study

The objectives of this ecological study were to

Â Identify important ecological habitats present within the proposed project area

Â Determine floral and faunal diversity of the proposed project site.

Â Assess the potential impacts of the master plan of the proposed area on the ecological resources.

Â Provide practical mitigation measures to combat, minimize or avoid impacts from the proposed master plan.

1.2. Methodology to conduct Ecological Impact Assessment

The current study was carried-out in following steps:

i. Documentation of important ecological resources, i.e surveys were conducted to gather data about habitat, flora and fauna in the region, in addition to it, available literature (published reports, research papers etc.) were searched and used in compiling ground observations.

ii. Evaluation of significance of ecological resources

iii. Prediction of ecological impacts on the resources due to project development and

iv. Provision of mitigation measures which will reduce or minimize impacts identified on ecological resources.

1.3. Legislation and Guidelines

This Ecological impact assessment was carried-out in consideration of national and international legislations which Pakistan is abided by. The list of guidelines and conventions is as follows:
1.3.1. International Legislations

Pakistan is signatory to many international conventions and treaties

1.3.1.1. Ramsar Convention

This is intergovernmental Convention on Wetlands of International Importance; Pakistan is ratified to this convention on November 23, 1976. The main objective of this convention is to conserve world’s wetlands and their resources.

1.3.1.2. Bonn Convention

Convention on the Conservation of migratory Species of Wild Animals, June 1979 and came into force in Pakistan in 1987. The main aim of this convention is to conserve terrestrial, aquatic and avian migratory species throughout their range.

1.3.1.3. Convention on Biological Diversity (CBD)

Pakistan ratified to CBD in 1994; it recognizes the intrinsic value of biological diversity and ecological, genetic, social, economic, cultural, educational, recreational, and aesthetic values of biodiversity and its components.

1.3.1.4. IUCN Red List of threatened species

The International Union for Conservation of Nature and Natural resources (IUCN) Red List of Threatened Species provides taxonomic, conservation status and distribution information on plants, fungi and animals that have been globally evaluated using the IUCN Red List Categories and Criteria. This system is designed to determine the relative risk of extinction, and the main purpose of the IUCN Red List is to catalogue and highlight those plants and animals that are facing a higher risk of global extinction (i.e. those listed as Critically Endangered, Endangered and Vulnerable). It also includes information on plants, fungi and animals that are categorized as Extinct or Extinct in the Wild; on taxa that cannot be evaluated because of insufficient information (i.e., are Data Deficient); and on plants, fungi and animals that are either close to meeting the threatened thresholds or that would be threatened were it not for an ongoing taxon-specific conservation programme (i.e., are Near Threatened).
1.3.1.5. CITES

The Convention on International Trade in Endangered Species of Wild Fauna and Flora is an international agreement between governments. Its aim is to ensure that international trade in specimens of wild animals and plants does not threaten their survival. The species covered by CITES in the project area are listed in Appendix-1.

1.3.2. National Legislation, Acts and Rules

Following national laws and acts are in force in Pakistan for the protection of Environment and biological diversity.

- Pakistan Forest Act 1927; Forest (Amended) act 2001
- Punjab Wildlife (Protection, Preservation, Conservation and Management) (Amendment) Act, 2007. The detail of animals and birds protected under the three schedules of this act is attached in Appendix-2.
- Pakistan Environmental Protection Act, 1997
- Pakistan National Conservation Strategy (1992)
- Biodiversity Action Plan (2000)

1.4. Study Team

The details of ecological study team members is as given below;

Table 1.1 The Ecological Study Team

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Name of the Member</th>
<th>Specialization</th>
<th>Qualification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dr. Faiza Sharif</td>
<td>Conservation Biologist/Restoration Ecologist</td>
<td>Ph. D. Botany (GCU Lahore)</td>
</tr>
<tr>
<td>2</td>
<td>Dr. Sumbal Nazir</td>
<td>Zoologist</td>
<td>Ph.D Environmental Science (GCU Lahore), M. Phil. Zoology (GCU Lahore).</td>
</tr>
<tr>
<td>3</td>
<td>Ms. Laila Shahzad</td>
<td>Environmentalist</td>
<td>M. Phil. Environmental Science (GCU Lahore), PhD Scholar Environmental Science (LCWU Lahore)</td>
</tr>
<tr>
<td>4</td>
<td>Ms. Asma Mansoor</td>
<td>Ecologist</td>
<td>BSc (Hons.) Environmental Science (GCU Lahore), MPhil. Student Environmental Science (GCU Lahore)</td>
</tr>
</tbody>
</table>
Chapter 2: OBSERVATIONS AND INTERPRETATIONS

This part deals with baseline study based on ecological assessment of habitats in the project area.

2.1. Ecological Baseline Study of the proposed project

2.1.1. Project Study Area

The area of Lahore Division is about 11413.5 km² with the population of 14 million in accordance with 1998 population census. With average growth rate of 3.20, the current population of Lahore division is estimated as 25 million. A projection is that by year 2035 there will be almost 50 million people living in the division. The cited area is diverse mix of agricultural land, settlements in the form of towns and villages, orchards, rivers, canals, railway lines etc.

2.1.2. Steps in Ecological baseline study

The ecological baseline study was carried-out in three steps

a. identifying habitat types in the project area,

b. identifying species of flora and their protection status

c. identifying species of fauna and their protection status

2.1.2.1. Detail of different Habitats in the project area

Agriculture and Orchards

Out of many identified habitats, major area in the project sites was under Agriculture. Most of the agriculture land will be plunged in new development. Current agricultural area of the project site is 285,875 acres, most of that lies in Kasur (Bhai Pheru...
21800 Acres, Kasur 11044 Acres and Pattoki 13353 Acres) and Lahore (Raiwind and Multan road 46230 Acres) Districts. After the implementation of the proposed Master Plan 160,379 acres (30.26%) of this productive agricultural land will be lost causing a great threat to food security. Wheat and rice are the major staple crops of the study area, while maize, sugarcane and seasonal vegetables are also cultivated. The crops observed during the visit were wheat, potatoes, sugarcane, radish, onion, carrot, spinach, mustard, clover etc. After agriculture the other prominent area in the project site was Orchards, most of which are privately owned. According to the master plan of the project site, most of these orchards will be converted in residential areas in new development. There was significant number of orchards present in study area. These orchards were mainly of Guava while a few of oranges and mangoes were also sighted. Besides cultivation of croplands, orchard plantation is common practice for commercial purposes. These orchards were also the habitat of many birds, mammals and plant species. Common bird species were Streptopelia tranquebarica, Acridotheres tristis, and Passer domesticus. Following species of mammals were there ratus ratus, Mus musculus, and Suncus murinus. Some grasses and herbs were also present there. Most common plant species were Dalbergia sisso, Albizia lebbeck, Eucalyptus, Ficus religiosa and Acacia nilotica.

Railway/ roadside verges/ greenbelts

After agriculture and orchards, second category of habitat was railways, roadsides and greenbelts. Some abundant species here were Melia azedarach, Dalbergia sisso, Albizia lebbeck, Ficus religiosa, Populus euphratica, F. banglensis and Acacia nilotica. It was observed that the pattern of vegetation changed when we move from suburbs to urban residential areas. Suburbs/countryside were populated with native species like Morus alba, Ricinus communis, Calotropis procera, Parkinsonia spp, Ficus spp, Dalbergia sissoo and A. nilotica etc. Whereas towards the urban residential areas, species of horticultural importance as well as ornamental plants were common like many plam species Ficus variegata, Jatropha hastata, Polyalthia longifolia, Nerium oleander, Rosa indica, Bougainvillea spectabilis wild. On roadsides and wastelands invasion of Leucaena leucocephala, Lantana camara and Parthenium was observed. Among the invasive species Prosopis juliflora and Parthenium hysterophorus were very common on railroad and roadside verges.
Residential/ Office areas
In this category of habitats included settlements, industrial areas and offices. The commercial value was very high due to presence of many industries. It also includes towns, villages with major settlements. Most of the industries have spacious well-maintained green lawns. Ornamental plants and plants of horticultural importance were also common in this habitat. Some fruit trees like Papaya, orange, banana, guava, mango, jaman (Syzygium cumini) and lemon were common in this area. Species of ornamental palms and trees were more abundant in this habitat type like Cycas revoluta, Butia capitate, Caryota urens, Phoenix roebelenii, Phoenix dactylifera, and Roystonea regia.

River/ Canal Banks
The banks of the river Ravi and river Sutlej are vegetated with tree species like Dalbergia sissoo, Eucalyptus, Populus euphratica and Acacia nilotica where ever riparian forests exist. Many grasses and sedges are common on the river bank as Saccharum munja, S. spontaneum, Cyperus difformis and C. iria, Phragmites karka etc.

River/ Ponds
In the project site, two important rivers are river Ravi and river Sutlej with six canals; Bambanwala Ravi, Bedian Link Canal, Qadirabad-Bulloki Link Canal, Balloki Ḥ Sulemanki Link, Lower Būri Doūb Canal, Upper Chenab Canal and Lower Chenab Canal. Ravi and Sutlej have considerable value for fishing, important fishes of the two rivers were Thaila, Mori, Rohu, Singharee and Carp etc. The river Ravi is highly polluted river of Punjab with untreated industrial and municipal waste ending up in it. The situation is further worsened by dumping of municipal solid waste on its banks. There were also wastewater ponds around villages and low lying waterlogged areas. There are also few fish ponds in the area owned by the locals. There were four exotic fish species identified in the project site; Ctenopharyngodon idella, Cyprinus carpio, Hypophthalmichthys molitrix, and Hypophthalmichthys nobilis. Many birds, amphibians and reptiles were observed around these aquatic habitats. The following bird species were observed in ponds Egretta intermedia, Streptopelia tranquebarica, Acrocephalus tristis, Dicurus macrocerus vieillot, Egretta garzetta, Corvus
splendens. Common fish species were Labeo rohita, Catla catla and Cirrhinus mrigala. One Amphibian species Eupllyctis cyanophlyctis was common there. From the aquatic plants, Polygonum spp. and Potamogeton spp. were less common as compared to abundant exotic species Eichhornia and Pistia.

From the proposed 48 project sites in Lahore Division, identified habitat types with species richness of flora and fauna in each habitat are given in Table 1. A total of 148 plant species, 70 bird, 13 mammal, 15 reptile and 3 amphibian species are reported from the study area.

Table 2.1 Species richness of fauna and flora of the habitat types in the study area

<table>
<thead>
<tr>
<th>Habitat types</th>
<th>Birds</th>
<th>Mammals</th>
<th>Reptiles</th>
<th>Amphibians</th>
<th>Plants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture and Orchards</td>
<td>61</td>
<td>13</td>
<td>10</td>
<td>2</td>
<td>89</td>
</tr>
<tr>
<td>Railway/Road sides/Green Belts</td>
<td>27</td>
<td>11</td>
<td>8</td>
<td>2</td>
<td>120</td>
</tr>
<tr>
<td>Residential/Offices</td>
<td>8</td>
<td>5</td>
<td>6</td>
<td>2</td>
<td>65</td>
</tr>
<tr>
<td>River/Canal Banks</td>
<td>38</td>
<td>13</td>
<td>6</td>
<td>3</td>
<td>50</td>
</tr>
<tr>
<td>River</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Pond</td>
<td>28</td>
<td>-</td>
<td>5</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Total species</td>
<td>70</td>
<td>13</td>
<td>15</td>
<td>3</td>
<td>146</td>
</tr>
</tbody>
</table>

2.1.2.2. Survey for the Floral Inventory and other details in the project area

Plants species in the study area were surveyed by the team in the designated area of the project. The Species richness of fauna and flora of the habitat types in the study area surveys were carried out along the main and side roads of the proposed area. Plant species on the main and side roads, railway embankments, orchards, grasslands and agricultural fields were carried out using 100 m long transects. Samples of un-identified plants species were collected for the purpose of identification which were then identified using Floras of Lahore, Punjab and Pakistan. Help from eflora of Pakistan, IUCN’s red list and global invasive species database websites was also taken. Number and types of trees, shrubs, and herbs were recorded during the surveys and their IUCN status was noted afterwards. Few
Chapter 2: OBSERVATIONS AND INTERPRETATIONS

common trees were shisham, kikar, peepal, beri, toot, derak, phulai etc. List of plant species identified from different habitats is presented in Table-2.
Chapter 2: OBSERVATIONS AND INTERPRETATIONS

Table 2.2 List of plant species identified from different habitats

<table>
<thead>
<tr>
<th>SCIENTIFIC NAMES</th>
<th>COMMON NAMES</th>
<th>A+O</th>
<th>R/R. V/G. B</th>
<th>R+O</th>
<th>R/C. B</th>
<th>ABUNDANCE CLASS</th>
<th>IUCN STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>TREES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acacia nilotica</td>
<td>Egyptian Thorn/Kikar</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>A</td>
<td>Not Evaluated</td>
</tr>
<tr>
<td>Albizia lebbeck</td>
<td>Rain Tree/ shreen</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>A</td>
<td>Not Evaluated</td>
</tr>
<tr>
<td>Alstonia scholaris</td>
<td>White Cheesewood</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>D</td>
<td>Least Concern</td>
</tr>
<tr>
<td>Azadirachta indica</td>
<td>Neem Tree</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>B</td>
<td>Not Evaluated</td>
</tr>
<tr>
<td>Bombax ceiba</td>
<td>Cotton Tree/ sambal</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>C</td>
<td>Not Evaluated</td>
</tr>
<tr>
<td>Bauhinia variegata</td>
<td>Kachnar</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>E</td>
<td>Least Concern</td>
</tr>
<tr>
<td>Carica papaya</td>
<td>Papaya</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>E</td>
<td>Not Evaluated</td>
</tr>
<tr>
<td>Citrus sinensis</td>
<td>Orange</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>E</td>
<td>Not Evaluated</td>
</tr>
<tr>
<td>Cupressus sempervirens</td>
<td>Italian Cypress/Saru</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>E</td>
<td>Not Evaluated</td>
</tr>
<tr>
<td>Dalbergia sissoo</td>
<td>Sissoo Tree</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>A</td>
<td>Not Evaluated</td>
</tr>
<tr>
<td>Erythrina suberosa</td>
<td>Corky Coral Tree</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>E</td>
<td>Not Evaluated</td>
</tr>
<tr>
<td>Eucalyptus camaldulensis</td>
<td>Red Gum</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>A</td>
<td>Not Evaluated</td>
</tr>
<tr>
<td>Ficus benghalensis</td>
<td>Banyan Fig</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>B</td>
<td>Not Evaluated</td>
</tr>
<tr>
<td>Ficus religiosa</td>
<td>Peepul Tree</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>A</td>
<td>Not Evaluated</td>
</tr>
<tr>
<td>Ficus variegata</td>
<td>True Fig Shell</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>C</td>
<td>Not Evaluated</td>
</tr>
<tr>
<td>Jatropha hastata</td>
<td>Spicy Jatropha</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>E</td>
<td>Not Evaluated</td>
</tr>
<tr>
<td>Leucaena leucocephala</td>
<td>White lead tree</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>C</td>
<td>Not Evaluated</td>
</tr>
<tr>
<td>Heterophragma quadriloculare</td>
<td>Waras</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>E</td>
<td>Not Evaluated</td>
</tr>
<tr>
<td>Mangifera indica</td>
<td>Mango</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>C</td>
<td>Data Deficient</td>
</tr>
<tr>
<td>Melia azedarach</td>
<td>China Berry</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>A</td>
<td>Not Evaluated</td>
</tr>
<tr>
<td>Moulsari Bonsai</td>
<td>Spanish Cherry</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>B</td>
<td>Not Evaluated</td>
</tr>
<tr>
<td>Morus alba</td>
<td>White Mulberry</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>B</td>
<td>Not Evaluated</td>
</tr>
<tr>
<td>Morus nigra</td>
<td>Black Mulberry</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>C</td>
<td>Not Evaluated</td>
</tr>
</tbody>
</table>
Chapter 2: OBSERVATIONS AND INTERPRETATIONS

<table>
<thead>
<tr>
<th>Plant Name</th>
<th>Common Name</th>
<th>Habitats</th>
<th>Endemicity</th>
<th>IUCN Status</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinus roxburghii</td>
<td>Pine</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>E</td>
</tr>
<tr>
<td>Polyalthia longifolia</td>
<td>Ashok</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>D</td>
</tr>
<tr>
<td>Populus euphratica</td>
<td>Salt Poplar</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>B</td>
</tr>
<tr>
<td>Prosopis cineraria</td>
<td>Jand</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>E</td>
</tr>
<tr>
<td>Prosopis juliflora</td>
<td>Mesquite</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>A</td>
</tr>
<tr>
<td>Psidium guajava</td>
<td>Guava</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>C</td>
</tr>
<tr>
<td>Salvadora oleoides</td>
<td>Peelu</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>E</td>
</tr>
<tr>
<td>Syzygium cumini</td>
<td>Black Plum</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>B</td>
</tr>
<tr>
<td>Tamarix aphylla</td>
<td>Athel Pine</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>E</td>
</tr>
<tr>
<td>Tamarix dioica</td>
<td>Salt cedar</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>E</td>
</tr>
<tr>
<td>Terminalia arjuna</td>
<td>Arjun Tree</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>D</td>
</tr>
<tr>
<td>Thuja occidentalis</td>
<td>Mor Parkh</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>E</td>
</tr>
<tr>
<td>PALMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bismarkia nobilis</td>
<td>Bismarck palm</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>E</td>
</tr>
<tr>
<td>Butia capitata</td>
<td>Jelly Palm</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>E</td>
</tr>
<tr>
<td>Caryota urens</td>
<td>Wine palm</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>E</td>
</tr>
<tr>
<td>Chamaedorea elegans</td>
<td>Parlour Palm</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>E</td>
</tr>
<tr>
<td>Chamaerops humilis</td>
<td>Fan Palm</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>E</td>
</tr>
<tr>
<td>Livistona chinensis</td>
<td>Chinese Fan Palm</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>E</td>
</tr>
<tr>
<td>Musa paradisiaca</td>
<td>Banana</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>E</td>
</tr>
<tr>
<td>Phoenix dactylifera</td>
<td>Date Palm</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>E</td>
</tr>
<tr>
<td>Phoenix roebelenii</td>
<td>Miniature Date Palm</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>E</td>
</tr>
<tr>
<td>Roystonea regia</td>
<td>Cuban royal palm</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>E</td>
</tr>
<tr>
<td>SHRUBS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abutilon bidentatum</td>
<td>Velvetleaf</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>E</td>
</tr>
<tr>
<td>Abutilon hybridum</td>
<td>Chinese Bellflower</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>E</td>
</tr>
<tr>
<td>Acacia farnesiana</td>
<td>Mimosa Bush</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>E</td>
</tr>
</tbody>
</table>
Chapter 2: OBSERVATIONS AND INTERPRETATIONS

<table>
<thead>
<tr>
<th>Species</th>
<th>Common Name</th>
<th>Status</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ageratum conyzoides</td>
<td>Floss Flower</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Atriplex crassifolia</td>
<td>Saltbush</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Bougainvillea spectabilis wild</td>
<td>Bougainvillea</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Callistemon citrinus</td>
<td>Bottle Brush</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Calotropis procera</td>
<td>Rubber bush/Aak</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Capparis decidua</td>
<td>Kuler</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Cestrum nocturnum</td>
<td>Night Blooming Jasmine</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Cuscuta gronovii</td>
<td>Common Dodder</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Cycas revoluta</td>
<td>Sago palm</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Hibiscus rosa sinensis</td>
<td>Shoe Flower</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Ipomoea carnea</td>
<td>Bush Morning Glory</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Jasminum officinale</td>
<td>Jasmine</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Lantana camara*</td>
<td>Big Sage</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Murraya exotica</td>
<td>Orange Jasmine</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Nerium oleander</td>
<td>Oleander</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Parkinsonia aculeata</td>
<td>Cambron</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Ricinus communis</td>
<td>Castor Oil Plant</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Rosa indica</td>
<td>Rose Bed</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Sida cordifolia</td>
<td>Country Mallow</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Tamarix dioca</td>
<td>Salt Cedar</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Thevetia peruviana</td>
<td>Yellow Oleander</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Withania somnifera</td>
<td>Indian Ginseng</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>HERBS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agave americana</td>
<td>Century Plant</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Achyranthes aspera</td>
<td>Prickly Chaff Flower</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Alhagi maurorum</td>
<td>Camethorn</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Alternanthera sessilis</td>
<td>Sessile Joyweed</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>
Chapter 2: OBSERVATIONS AND INTERPRETATIONS

<table>
<thead>
<tr>
<th>Species</th>
<th>Common Name</th>
<th>Observations</th>
<th>Interpretations</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amaranthus viridis</td>
<td>Slender Amaranth</td>
<td>+</td>
<td>-</td>
<td>B</td>
</tr>
<tr>
<td>Boerhavia diffusa</td>
<td>Red Spiderling</td>
<td>+</td>
<td>-</td>
<td>C</td>
</tr>
<tr>
<td>Canna indica</td>
<td>Canna</td>
<td>-</td>
<td>+</td>
<td>E</td>
</tr>
<tr>
<td>Cassia absus</td>
<td>Tropical Sensitive Pea</td>
<td>+</td>
<td>-</td>
<td>D</td>
</tr>
<tr>
<td>Chenopodium album</td>
<td>Lambsquarters</td>
<td>+</td>
<td>-</td>
<td>B</td>
</tr>
<tr>
<td>Chenopodium murale</td>
<td>Goose Foot</td>
<td>+</td>
<td>-</td>
<td>D</td>
</tr>
<tr>
<td>Chrozophora tinctoria</td>
<td>Dyer's Litmus</td>
<td>+</td>
<td>-</td>
<td>E</td>
</tr>
<tr>
<td>Convolvulus arvensis</td>
<td>Field Bindweed</td>
<td>+</td>
<td>-</td>
<td>C</td>
</tr>
<tr>
<td>Conyza ambigua</td>
<td>Rough Conyza</td>
<td>+</td>
<td>-</td>
<td>B</td>
</tr>
<tr>
<td>Conyza canadensis</td>
<td>Horseweed</td>
<td>+</td>
<td>-</td>
<td>E</td>
</tr>
<tr>
<td>Croton sparsiflorus</td>
<td>Ban Tulasi</td>
<td>+</td>
<td>-</td>
<td>B</td>
</tr>
<tr>
<td>Croton tiglium</td>
<td>Purging Croton</td>
<td>-</td>
<td>+</td>
<td>E</td>
</tr>
<tr>
<td>Digera muricata</td>
<td>False Amaranth</td>
<td>+</td>
<td>-</td>
<td>C</td>
</tr>
<tr>
<td>Datura metel</td>
<td>Devil's Trumpet</td>
<td>-</td>
<td>+</td>
<td>E</td>
</tr>
<tr>
<td>Eclipta alba</td>
<td>Eclipse Blanche</td>
<td>+</td>
<td>-</td>
<td>B</td>
</tr>
<tr>
<td>Euphorbia hirta</td>
<td>Asthma Weed</td>
<td>+</td>
<td>-</td>
<td>C</td>
</tr>
<tr>
<td>Euphorbia prostrata</td>
<td>Prostrate Sandmat</td>
<td>+</td>
<td>-</td>
<td>B</td>
</tr>
<tr>
<td>Launaea procumbens</td>
<td>Country Dandelion</td>
<td>+</td>
<td>-</td>
<td>B</td>
</tr>
<tr>
<td>Malvastrum coromandelianum</td>
<td>False Mallow</td>
<td>+</td>
<td>-</td>
<td>C</td>
</tr>
<tr>
<td>Mazus Rugosus</td>
<td>Creeping Mazus</td>
<td>-</td>
<td>+</td>
<td>E</td>
</tr>
<tr>
<td>Opuntia ficus indica</td>
<td>Tuna Cactus</td>
<td>-</td>
<td>+</td>
<td>E</td>
</tr>
<tr>
<td>Origanum vulgare</td>
<td>Marwa</td>
<td>-</td>
<td>+</td>
<td>E</td>
</tr>
<tr>
<td>Oxalis corniculata</td>
<td>Sleeping Beauty</td>
<td>+</td>
<td>-</td>
<td>A</td>
</tr>
<tr>
<td>Parthenium hysterophorus</td>
<td>Whitetop Weed</td>
<td>+</td>
<td>-</td>
<td>A</td>
</tr>
<tr>
<td>Phyla nodiflora</td>
<td>Turkey Tangle Frogfruit</td>
<td>+</td>
<td>-</td>
<td>A</td>
</tr>
<tr>
<td>Physalis divaricata</td>
<td>Ground Cherry</td>
<td>+</td>
<td>-</td>
<td>B</td>
</tr>
<tr>
<td>Polygonum persicaria</td>
<td>Redshank</td>
<td>+</td>
<td>-</td>
<td>B</td>
</tr>
</tbody>
</table>
Chapter 2: OBSERVATIONS AND INTERPRETATIONS

<table>
<thead>
<tr>
<th>Species</th>
<th>Common Name</th>
<th>Observations</th>
<th>Interpretations</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polygonum plebejum</td>
<td>Small Knotweed</td>
<td>+</td>
<td>-</td>
<td>B</td>
</tr>
<tr>
<td>Solanum nigrum</td>
<td>Black Nightshade</td>
<td>+</td>
<td>-</td>
<td>A</td>
</tr>
<tr>
<td>Sonchus asper</td>
<td>Spiny Milk Thistle</td>
<td>+</td>
<td>-</td>
<td>C</td>
</tr>
<tr>
<td>Suaeda fruticosa</td>
<td>Shrubby Seablite</td>
<td>-</td>
<td>+</td>
<td>E</td>
</tr>
<tr>
<td>Trianthema portulacastrum</td>
<td>Wild Water Melon</td>
<td>+</td>
<td>-</td>
<td>B</td>
</tr>
<tr>
<td>Xanthium strumarium</td>
<td>Cocklebur</td>
<td>+</td>
<td>-</td>
<td>B</td>
</tr>
<tr>
<td>GRASSES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acrachne racemosa</td>
<td>Goosegrass</td>
<td>+</td>
<td>-</td>
<td>C</td>
</tr>
<tr>
<td>Bothriochloa laguroides</td>
<td>Silver Beardgrass</td>
<td>+</td>
<td>-</td>
<td>C</td>
</tr>
<tr>
<td>Brachiaria reptans</td>
<td>Creeping Panic Grass</td>
<td>+</td>
<td>-</td>
<td>C</td>
</tr>
<tr>
<td>Cenchrus ciliaris</td>
<td>Buffel Grass</td>
<td>+</td>
<td>-</td>
<td>D</td>
</tr>
<tr>
<td>Cenchrus setigerus</td>
<td>Birdwood Grass</td>
<td>+</td>
<td>-</td>
<td>C</td>
</tr>
<tr>
<td>Cynodon dactylon</td>
<td>Bermuda Grass</td>
<td>+</td>
<td>+</td>
<td>A</td>
</tr>
<tr>
<td>Dactyloctenium aegyptium</td>
<td>Egyptian Crowfoot Grass</td>
<td>+</td>
<td>-</td>
<td>C</td>
</tr>
<tr>
<td>Dactyloctenium scindicum</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>B</td>
</tr>
<tr>
<td>Desmostachya bipinnata</td>
<td>Halfa Grass</td>
<td>+</td>
<td>+</td>
<td>A</td>
</tr>
<tr>
<td>Digitaria ciliaris</td>
<td>Southern Crabgrass</td>
<td>+</td>
<td>+</td>
<td>B</td>
</tr>
<tr>
<td>Eleusine indica</td>
<td>Wiregrass</td>
<td>+</td>
<td>+</td>
<td>D</td>
</tr>
<tr>
<td>Eragrostis ciliaris</td>
<td>Candy Grass</td>
<td>+</td>
<td>-</td>
<td>D</td>
</tr>
<tr>
<td>Eriochloa procera</td>
<td>Spring Grass</td>
<td>+</td>
<td>-</td>
<td>D</td>
</tr>
<tr>
<td>Hemarthria compressa</td>
<td>Whip Grass</td>
<td>+</td>
<td>+</td>
<td>C</td>
</tr>
<tr>
<td>Imperata cylindrica</td>
<td>Blady Grass</td>
<td>+</td>
<td>-</td>
<td>C</td>
</tr>
<tr>
<td>Leptochloa panicea</td>
<td>Mucronate Sprangletop</td>
<td>+</td>
<td>+</td>
<td>C</td>
</tr>
<tr>
<td>Panicum antidotale</td>
<td>Blue Panicgrass</td>
<td>+</td>
<td>-</td>
<td>C</td>
</tr>
<tr>
<td>Paspalum distichum</td>
<td>Gingergrass</td>
<td>+</td>
<td>-</td>
<td>D</td>
</tr>
</tbody>
</table>
Chapter 2: OBSERVATIONS AND INTERPRETATIONS

<table>
<thead>
<tr>
<th>Plant Name</th>
<th>Common Name</th>
<th>Presence</th>
<th>A+O</th>
<th>R/R.V/G.B.</th>
<th>R+O</th>
<th>A = very Common, B = Common & Widespread, C = Less Common, D = Uncommon, E = Rare</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phragmites karka</td>
<td>Tall Reed</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>C - Least Concern</td>
</tr>
<tr>
<td>Saccharum munja</td>
<td>Plume Grass</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>B - Not Evaluated</td>
</tr>
<tr>
<td>Saccharum ravennae</td>
<td>Canne D’italie</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>C - Least Concern</td>
</tr>
<tr>
<td>Saccharum spontaneum</td>
<td>Wild Cane</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>B - Least Concern</td>
</tr>
<tr>
<td>Setaria glauca</td>
<td>Yellow Foxtail</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>D - Not Evaluated</td>
</tr>
<tr>
<td>Setaria pumila</td>
<td>Pigeon Grass</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>C - Not Evaluated</td>
</tr>
<tr>
<td>Sorghum halepense</td>
<td>Johnson Grass</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>C - Not Evaluated</td>
</tr>
<tr>
<td>Sporobolus coromandelianus</td>
<td>Madagascar Dropseed</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>D - Not Evaluated</td>
</tr>
<tr>
<td>SEDGES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carex fedia ness.</td>
<td>Carex</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>C - Not Evaluated</td>
</tr>
<tr>
<td>Cyperus difformis</td>
<td>Smallflower Umbrella Sedge</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>E - Least Concern</td>
</tr>
<tr>
<td>Cyperus iria</td>
<td>Rice Flat Sedge</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>B - Least Concern</td>
</tr>
<tr>
<td>Cyperus rotundus</td>
<td>Nut-Grass</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>B - Least Concern</td>
</tr>
<tr>
<td>Pycreus flavidus</td>
<td></td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>E - Least Concern</td>
</tr>
</tbody>
</table>

Chapter 2: OBSERVATIONS AND INTERPRETATIONS

Detail of aquatic plants identified from the river Ravi, river Sutlej, canals and pond areas is presented in Table 3.

Table 2.3 List of aquatic plant species identified from different habitats

<table>
<thead>
<tr>
<th>AQUATIC PLANTS</th>
<th>COMMON NAMES</th>
<th>Habitats</th>
<th>Abundance class</th>
<th>IUCN STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>River/ Canal</td>
<td>Pond</td>
<td></td>
</tr>
<tr>
<td>ANGIOSPERMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eichhornia crassipes*</td>
<td>Water Hyacinth</td>
<td>+</td>
<td>+</td>
<td>A</td>
</tr>
<tr>
<td>Hydrilla verticillata</td>
<td>Water thyme</td>
<td>+</td>
<td>-</td>
<td>D</td>
</tr>
<tr>
<td>Pistia stratiotes*</td>
<td>Tropical Duck-Weed</td>
<td>+</td>
<td>+</td>
<td>B</td>
</tr>
<tr>
<td>Potamogeton sp.</td>
<td>Pondweed</td>
<td>+</td>
<td>-</td>
<td>E</td>
</tr>
<tr>
<td>Polygonum</td>
<td>Knot Grass</td>
<td>-</td>
<td>+</td>
<td>D</td>
</tr>
<tr>
<td>Typha angustata</td>
<td>Lesser Indian reed mace</td>
<td>-</td>
<td>+</td>
<td>C</td>
</tr>
</tbody>
</table>

In the project area, flora and fauna species were identified and their status was evaluated on the basis of following information.

Table 2.4 Status of plant species recorded within the study area

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protection Status</td>
<td>No plant species was protected under IUCN Red List of Threatened Species.</td>
</tr>
<tr>
<td>Distribution</td>
<td>15 are very common, 28 are common and wide spread, 34 are less common, 18 are uncommon and 53 are rare in the study area.</td>
</tr>
<tr>
<td>Rarity</td>
<td>No plant species was protected under IUCN Red List of Threatened Species.</td>
</tr>
</tbody>
</table>

In the project area, plant species richness is calculated from the details of all plants in different habitats. Species richness is the number of different species represented in an ecological community, landscape or region. Species richness is simply a count of species, and it does not take into account the abundances of the species or their relative abundance distributions. Species diversity takes into account both species richness and species evenness. There were 35 tree, 12 palm, 25 shrub, 37 herb, 28 grass, 5 sedge and 6 species of aquatic plants reported from the study area to give of a total of 148 species (Table 5).
Table 2.5 Overall species richness of all plants recorded within the study area

<table>
<thead>
<tr>
<th>Plant Type</th>
<th>Richness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trees</td>
<td>35</td>
</tr>
<tr>
<td>Palms</td>
<td>10</td>
</tr>
<tr>
<td>Shrubs</td>
<td>25</td>
</tr>
<tr>
<td>Herbs</td>
<td>37</td>
</tr>
<tr>
<td>Grasses</td>
<td>28</td>
</tr>
<tr>
<td>Sedges</td>
<td>5</td>
</tr>
<tr>
<td>Aquatic</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>146</td>
</tr>
</tbody>
</table>

2.1.2.3. Survey for inventory of faunal diversity in the project site

Extensive surveys were carried-out in the project area and data was gathered for mammals, reptiles, birds and amphibians. A checklist of the species that might be expected in the study area was prepared by searching published literature. Both direct observation and indirect methods were used to gather information. Community surveys were carried out and data was gathered from the local people regarding information of animals in the area using field guides and colored photographs. The detailed survey included ecological importance of species, their niche and their IUCN conservation status; like endangered, threatened, vulnerable etc.

Bird survey

Birds were surveyed in early morning and late afternoon of the same day with the help of transects and walkovers in the study sites. Identification of species was done using binoculars. Effective sampling distance was 200 m from transects. The recorded data of birds was about species identity and their relative abundance in each of the habitat. Table 7 and Figures 2-6 show details of the birds found in the project area.
Chapter 2: OBSERVATIONS AND INTERPRETATIONS

Mammal survey

Mammals were surveyed during the visits and were identified from field observations of paw prints, scats and their burrows. Table 6 and Figure 7 show details of the mammals found in the project area.
Chapter 2: OBSERVATIONS AND INTERPRETATIONS

Table 2.6 List of mammals recorded within the project area

<table>
<thead>
<tr>
<th>Mammals\Species</th>
<th>Common name</th>
<th>Habitats</th>
<th>AC</th>
<th>IUCN status</th>
<th>Punjab Wildlife Act</th>
<th>CITES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A+O</td>
<td>R/R./G. B</td>
<td>R+O</td>
<td>R./C. B</td>
<td>P</td>
</tr>
<tr>
<td>Rattus rattus</td>
<td>House rat</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Golunda ellioti</td>
<td>Indian Bush rat</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Millardia meltada</td>
<td>soft furred field rat</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Mus musculus</td>
<td>House mouse</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Suncus murinus</td>
<td>Asiatic House shrew</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Megaderma lyra</td>
<td>Indian false vampires</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Funambulus pennantii</td>
<td>Palm squirrel</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Hystrix indica</td>
<td>Indian crested porcupine</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Lepus nigricollis</td>
<td>Indian hare</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Felis chaus</td>
<td>Jungle cat</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Herpestes mungo</td>
<td>Indian mongoose</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Sus scrofa</td>
<td>Wild boar</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Canis aureus</td>
<td>Asiatic Jackal</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

*=Migratory, A+O = Agriculture + Orchards, R/R.V/G.B = Railway/Road Verges/Green, R/C.B = River/Canal Bank, R+O = Residential+Offices, P = Ponds, AC = abundance class, LC=Least concern, VU=Vulnerable, NE=Not evaluated, NT = Near Threatened, A=very common, B= common & wide spread, C= less common, D= Uncommon, E = Rare

Table 2.7 List of Bird species recorded within the project area

<table>
<thead>
<tr>
<th>Birds Species</th>
<th>Common name</th>
<th>Habitats</th>
<th>AC</th>
<th>IUCN status</th>
<th>Punjab Wildlife Act</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A+O</td>
<td>R/R/G. B</td>
<td>R+O</td>
<td>R./C. B</td>
</tr>
<tr>
<td>Egretta intermedia</td>
<td>Intermediate Egret</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Streptopelia tranquebarica</td>
<td>Red turtle dove</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Species</td>
<td>Common Name</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Acridotheres tristis</td>
<td>Common Myna</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Passer domesticus</td>
<td>House Sparrow</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Dicrurus macrocercus vieillot</td>
<td>Black Drongo</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Corvus splendens</td>
<td>House Crow</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Pyconotus cafer</td>
<td>Red vented bulbul</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Babulcus ibis</td>
<td>Cattle egret</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Upopa epops</td>
<td>Hoopoe</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hoplopterus indicus*</td>
<td>Red-Wattled Lapwing</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Merops orientalis</td>
<td>Green bee eater</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Acridotheres gingenianus</td>
<td>Bank Myna</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Anas Platyrhynchos*</td>
<td>Mallard</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gallinula chloropus*</td>
<td>Common moorhen</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ceryle rudis</td>
<td>Pied kingfisher</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Callacanthis burtoni</td>
<td>Spectacle Finch</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Milvus migrans migrans</td>
<td>Black kite</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Psittacula krameri</td>
<td>Rose-ringed Parakeet</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Columba livia</td>
<td>Wild rock dove</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Halcyon smyrnensis</td>
<td>White-breasted Kingfisher</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Treron phoenicoptera</td>
<td>Yellow-footed green pigeon</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Merops philippinus*</td>
<td>Blue tailed bee eater</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Saxicoloides fulicata</td>
<td>Indian robin</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Actitis hypoleucus*</td>
<td>Common Sand piper</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Motacilla alba</td>
<td>White wagtail</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gracupica contra</td>
<td>Pied myna</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cinnyris asiaticus</td>
<td>Purple sunbird</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Spilopelia senegalensis</td>
<td>Little brown dove</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dinopium benghalense</td>
<td>Golden backed woodpecker</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Scientific Name</td>
<td>Common Name</td>
<td>Status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>----------------------</td>
<td>--------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saxicola caprata</td>
<td>Bush chat</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Petronia xanthocollis</td>
<td>yellow throated sparrow</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anas crecca*</td>
<td>Common teal</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amaurornis phoenicurus</td>
<td>white breasted hen</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Streptopelia capicola</td>
<td>Ring necked dove</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coracias benghalensis</td>
<td>Indian roller</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hirundo rustica*</td>
<td>Common swallow</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galeria cristata</td>
<td>Crested lark</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turdoides caudate</td>
<td>Common babbler</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accipiter badius</td>
<td>Shikra</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lanius schach*</td>
<td>long tailed shrike</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coturnix coturnix*</td>
<td>Common Quail</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Egretta garzetta*</td>
<td>little egret</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ardeola grayii</td>
<td>Indian pond Heron</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Himantopus himantopus*</td>
<td>Black winged stilt</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orthotomus sutorius</td>
<td>Common tailor bird</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ploceus philippinus</td>
<td>baya weaver</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copsychus saularis</td>
<td>Magpie robin</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zosterops palpebrosus</td>
<td>Oriental white eye</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phalacrocorax riger*</td>
<td>Cormorant</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Egretta alba*</td>
<td>Large Egretta</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aquila rapax nipalensis</td>
<td>Tawny Eagle</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Francolinus francolinus</td>
<td>Black Partridge</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Francolinus pondiceranus</td>
<td>Grey Partridge</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centropus sinensis</td>
<td>Large Indian Parakeet</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Otus bakkamoena</td>
<td>Indian Scops Owl</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alcedo atthis*</td>
<td>Common Kingfisher</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chapter 2: OBSERVATIONS AND INTERPRETATIONS

22
<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Common Name</th>
<th>Observed Areas</th>
<th>Habitat</th>
<th>Distribution</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eremopterix grisea</td>
<td>Ashy Crowned Lark</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>E</td>
</tr>
<tr>
<td>Anthus novaeseelandiae</td>
<td>Richard Pipit</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>D</td>
</tr>
<tr>
<td>Dendrocopos assimilis</td>
<td>Sindh Pied Woodpecker</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>E</td>
</tr>
<tr>
<td>Tephrodornis pondicerianus</td>
<td>Common Wood Shrike</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>E</td>
</tr>
<tr>
<td>Pycnonotus leucogenys</td>
<td>White-cheeked Bubul</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>E</td>
</tr>
<tr>
<td>Cisticola juncidis*</td>
<td>Fan-tail Warbler</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>C</td>
</tr>
<tr>
<td>Prinia gracilis</td>
<td>Streaked Long-tail Warber</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>C</td>
</tr>
<tr>
<td>Chrysomma sinense</td>
<td>Yellow-eyed Babbler</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>D</td>
</tr>
<tr>
<td>Chrysomma altirostre</td>
<td>Sindh Babbler</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>E</td>
</tr>
<tr>
<td>Turdoides caudatus</td>
<td>Common Babbler</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>E</td>
</tr>
<tr>
<td>Lanius vittatus*</td>
<td>Bay-backed Shrike</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>E</td>
</tr>
<tr>
<td>Lanius excubitor*</td>
<td>Great Grey Shrike</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>E</td>
</tr>
<tr>
<td>Passer pyrrhonotus</td>
<td>Sindh Jungle Sparrow</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>D</td>
</tr>
<tr>
<td>Prinia socialis</td>
<td>Long Tailed Grass Warbler</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>B</td>
</tr>
</tbody>
</table>

* = Migratory, A+O = Agriculture + Orchards, R/R/V/G.B = Railway/Road Verges/Green, R/C.B = River/Canal Bank, R+O = Residential+Offices, P = Ponds, AC = abundance class, LC = Least concern, VU = Vulnerable, NE = Not evaluated, NT = Near Threatened, A = very common, B = common & wide spread, C = less common, D = Uncommon, E = Rare
Reptile and Amphibian survey

These field surveys were carried out to locate species and their habitats within the study area. The morning surveys were conducted in the bright day light and evening surveys of the same place were also carried out. List of the species is shown in table 8 and figures 8 and 9.

Bird species were more abundant along the river/canal banks, agricultural fields and orchards. Most common species were Passer domesticus, Corvus splendens, Acridotheres tristis, Egretta intermedia, and Dicrurus macrocercus vieillot. Wild boars and jackals were reported from the study area. Mostly small size mammals which included porcupines, rat and bat species were there. Mammals were mostly found in where thick vegetation cover was present along the canal banks, roadsides and agriculture fields. Among the reptiles, Varanus bengalensis, Bungarus caeruleus, Xenochrophis piscator, Calotes versicolor and Hemidactylus flaviviridis etc were common. Eight species of snakes and two species of turtles are reported. According to the IUCN red list of threatened species, Echis carinatus is vulnerable and Pangshura smithii is near threatened so they need to be protected. Only three Amphibian species were found in the study area. Among them, Hoplobatrachus tigrinus and Bufo stomaticus were very common. None of the species of birds, mammals and amphibians were found rare in the IUCN lists.
Table 2.8 List of Reptile and Amphibian species recorded within the project area

<table>
<thead>
<tr>
<th>Animal Species</th>
<th>Common name</th>
<th>Habitats</th>
<th>AC</th>
<th>IUCN status</th>
<th>Punjab Wildlife Act</th>
<th>CITES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A+O</td>
<td>R/R.V/GB</td>
<td>R+O</td>
<td>R./C.B</td>
<td>P</td>
</tr>
<tr>
<td>Reptiles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bungarus caeruleus</td>
<td>Indian crate</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Amphiesma stolatum</td>
<td>buff striped keelback</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Lycodon aulicus</td>
<td>Indian wolf snake</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ptyas mucosa</td>
<td>Oriental/Indian rat snake</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Typhlops porrectus</td>
<td>Slender Worm Snake, blind</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Eryx johnii</td>
<td>Indian sand boa (do-muha)</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Xenochrophis piscator</td>
<td>Checkered keelback</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Echis carinatus</td>
<td>Saw-scaled viper</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Varanus bengalensis</td>
<td>Indian monitor lizard</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Calotes versicolor</td>
<td>Oriental/Indian garden lizard</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hemidactylus flaviviridis</td>
<td>Yellow-bellied House Gecko</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ablepharus grayanus</td>
<td>Minor snake-eyed skink</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Eutropis macularia</td>
<td>Bronze grass skin</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pangshura smithii</td>
<td>Brown roofed turtle</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Lissemys punctata Adersoni</td>
<td>Indian flapshell turtle</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphibians</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hoplobatrachus tigrinus</td>
<td>Indian bull frog</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Bufo stomaticus</td>
<td>Indus toad</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Euphlyctis cyanophlyctis</td>
<td>Indian skipper frog</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

*=Migratory, A+O = Agriculture + Orchards, R/R.V/G.B = Railway/Road Verges/Green, R/C.B = River/Canal Bank, R+O = Residential+Offices, P = Ponds, AC = abundance class, LC=Least concern, VU=Vulnerable, NE=Not evaluated, NT = Near Threatened, A=very common, B= common & wide spread, C= less common, D= Uncommon, E = Rare
Fish survey

Fish surveys were carried out in the main channel of river Ravi and river Sutlej using monofilaments nylon gills net. These nets were deployed at different sites on 0.5 m depth from the surface for 30 minutes to one hour during the vegetation survey in nearby community. Fishermen were also interviewed to collect information on the fish present in the rivers. The list of the species present in the two rivers is given in Table 9.

Table 2.9 List of fish species found in the rivers of the project area

<table>
<thead>
<tr>
<th>Scientific Names</th>
<th>Common Names</th>
<th>IUCN status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catla catla</td>
<td>Thaila/Indian carp</td>
<td>LC</td>
</tr>
<tr>
<td>Channa marulius</td>
<td>Saul</td>
<td>LC</td>
</tr>
<tr>
<td>Channa punctata</td>
<td>Daula</td>
<td>LC</td>
</tr>
<tr>
<td>Cirrhinus mrigala</td>
<td>Mori</td>
<td>LC</td>
</tr>
<tr>
<td>Ctenopharyngodon idella †</td>
<td>Grass carp</td>
<td>NE</td>
</tr>
<tr>
<td>Cyprinus carpio †</td>
<td>Common carp/Gulfam</td>
<td>VU</td>
</tr>
<tr>
<td>Hypophthalmichthys molitrix †</td>
<td>Silver carp</td>
<td>NT</td>
</tr>
<tr>
<td>Hypophthalmichthys nobilis †</td>
<td>Big head carp</td>
<td>DD</td>
</tr>
<tr>
<td>Labeo rohita</td>
<td>Rohu</td>
<td>LC</td>
</tr>
<tr>
<td>Macrognathus pancealus</td>
<td>Groj</td>
<td>LC</td>
</tr>
<tr>
<td>Oreochromis aureus *</td>
<td>Tilapia</td>
<td>NE</td>
</tr>
<tr>
<td>Rita rita</td>
<td>Khagga/Tirkanda</td>
<td>LC</td>
</tr>
<tr>
<td>Sperata sarwari</td>
<td>Singharee</td>
<td>LC</td>
</tr>
<tr>
<td>Wallago attu</td>
<td>Mullee</td>
<td>NT</td>
</tr>
</tbody>
</table>

In the current study 14 species were found to be present in river Ravi and Sutlej. Among the fish species found grass carp (*Ctenopharyngodon idella*), bighead carp (*Hypophthalmichthys nobilis*), silver carp (*Hypophthalmichthys molitrix*), common carp (*Cyprinus carpio*) and tilapia (*Oreochromis aureus*) are exotic that were introduced into freshwater reservoirs of Pakistan for aquaculture, sport fishing or biological control of weeds. But now these species are competing with native species for food, breeding grounds and are preying upon them thus causing a decline in their population. These exotic species are becoming invasive in the freshwater biomes of the Punjab and other provinces of Pakistan by reason of their potent reproductive potential and feeding competitions with the native freshwater fish fauna. Resultantly
Chapter 2: OBSERVATIONS AND INTERPRETATIONS

The native fish species viz; Channa marulius, Wallago attu, Rita rita, Sperata sarwari, Catla catla, Cirrhinus mrigala and Labeo rohita, which are of economic value are reported to be under threat (Khan et al. 2008, 2011). IUCN threat status of the species showed that Hypophthalmichthys molitrix is near threatened and Cyprinus carpio is vulnerable but both species are introduced and not native to this area and the later one is an invasive exotic.
Chapter 2: OBSERVATIONS AND INTERPRETATIONS

Figure 2.1 Birds of study area

- *Dicrurus macrocercus vieillot*
- *Hoplopterus indicus*
- *Francolinus francolinus*
- *Ceryle rudis*
- *Halcyon smyrnensis*
- *Motacilla alba*
- *Callacanthis burtoni*
- *Treron phoenicoptera*
- *Gracupica contra*
- *Milvus migrans migrans*
- *Merops philippinus*
- *Cinnyris asiaticus*
- *Psittacula krameri*
- *Saxicoides fulicata*
- *Spilopelia senegalensis*
Chapter 2: OBSERVATIONS AND INTERPRETATIONS

<table>
<thead>
<tr>
<th>Image 1</th>
<th>Image 2</th>
<th>Image 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Chapter 2: OBSERVATIONS AND INTERPRETATIONS

Figure 2.2 Birds of Study Area
Chapter 2: OBSERVATIONS AND INTERPRETATIONS

Figure 2. 3 Birds of study area

Zosterops palpebrosus Otus bakkamoena Pycnonotus leucogenys

Chapter 2: OBSERVATIONS AND INTERPRETATIONS

Figure 2.4 Birds of Study Area

- **Prinia socialis**
- **Rattus rattus**
- **Megaderma lyra**
- **Herpestes mungo**
- **Golunda elliota**
- **Funambulus pennantii**
- **Sus scrofa**
- **Millardia meltada**
- **Hystrix indica**
- **Canis aureus**
Chapter 2: OBSERVATIONS AND INTERPRETATIONS

Source: The IUCN Red list of threatened species www.iucnredlist.org

Figure 2. 5 Mammals of Study Area

- *Mus musculus*
- *Lepus nigricollis*
- *Suncus murinus*
- *Felis chaus*

- *Bungarus caeruleus*
- *Eryx johnii*
- *Hemidactylus flaviviridis*
- *Amphiesma stolatum*
- *Xenochrophis piscator*
- *Ablepharus grayanus*
- *Lycodon aulicus*
- *Echis carinatus*
- *Eutropis maculana*
Chapter 2: OBSERVATIONS AND INTERPRETATIONS

2.1.3. Protection status of all Animals found in the area

After evaluating habitats and developing inventory of fauna species, status of protection was evaluated for the species of mammals, amphibians, reptiles and birds according to the criteria described.

Following is the detail of mammals in the study area those are evaluated on their distribution, protection status and rarity (Table 10).
Chapter 2: OBSERVATIONS AND INTERPRETATIONS

Table 2.10 Status of Mammals Species recorded within the Study Area

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protection Status</td>
<td>Herpestes mungo and Felis Chaus are protected under Punjab Wildlife Act.</td>
</tr>
<tr>
<td>Distribution</td>
<td>Rattus rattus, Funambulus pennantii, Mus musculus and Suncus murinus are very common. 7 species are common in the study area. Lepus nigricollis and Canis aureus are less common and uncommon, respectively. There are no endemic species.</td>
</tr>
<tr>
<td>Rarity</td>
<td>None of them are threatened according to IUCN red data list.</td>
</tr>
</tbody>
</table>

The detail of amphibian species evaluated on the basis of their distribution, protection status and rarity is given in table 11.

Table 2.11 Status of Amphibian Species recorded within the Study Area

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protection Status</td>
<td>None of the species are particularly protected.</td>
</tr>
<tr>
<td>Distribution</td>
<td>2 species are very common (Hoplobatrachus tigrinus and Bufo stomaticus), 1 species (Euphlyctis cyanophlyctis) is common and wide spread. There are no endemic species.</td>
</tr>
<tr>
<td>Rarity</td>
<td>None of them are rare locally or are threatened according to IUCN red data list.</td>
</tr>
</tbody>
</table>

In case of reptiles, the details of their distribution, protection status and rarity are listed in table 12.

Table 2.12 Status of Reptile Species recorded within the Study Area

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protection Status</td>
<td>Amphiesma stolatum, Lycodon aulicus, Ptyas mucosa and Xenochrophis piscator are protected under Punjab Wildlife Act Schedule Three. Varanus bengalensis and Lissmeys punctata adersoni are also protected under this wildlife act. These two species are also recorded in CITES Appendix list I and II respectively. Pangshura smithii is listed only in CITES Appendix II.</td>
</tr>
<tr>
<td>Distribution</td>
<td>5 species are very common in the study area. Ablepharus grayanus and Lissemys Punctata are common and wide spread. 4 species are less common and only 1 species (Ptyas mucosa) is uncommon.</td>
</tr>
</tbody>
</table>
Chapter 2: OBSERVATIONS AND INTERPRETATIONS

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protection Status</td>
<td>Egretta Intermedia, Streptopelia tranquebarica, Bubulcus ibis, Anas platyrhynchos, Milvus migrans migrans, Amaurornis phoenicurus, Ardeola grayii, Egretta garzetta and Egretta alba are listed in Punjab Wildlife Act Schedule III. Francolinus francolinus and Francolinus pondicerianus are present under Schedule I. Himantopus himantopus is protected under UNEP’s Agreement on the Conservation of African-Eurasian Migratory Water birds of Convention on migratory species</td>
</tr>
<tr>
<td>Distribution</td>
<td>6 species are very common, 10 species are common and widespread, 14 species are less common, 18 are uncommon species. Remaining are rare. There is no endemic species in this area.</td>
</tr>
<tr>
<td>Rarity</td>
<td>Chrysomma altirostre is vulnerable according to IUCN red data list.</td>
</tr>
</tbody>
</table>

The distribution, protection status and rarity of birds evaluated in the study area is provided in Table 13.

Table 2.13 Status of Birds Species recorded within the Study Area

2.2. Assessment of Ecological Impacts from the planning of new Development in the project area

This section of the report deals with the impacts on ecological resources of project area. The above identified habitats, species and other resources can have potential impacts from proposed master plan. Evaluation of these impacts has been carried-out for planning, implementation, construction and operation phases of the proposed Master Plan. To reveal the potential impacts on resources, visits were carried-out in the area in addition vigorous literature surveys were conducted to compile this section. Keeping legislations and guidelines in consideration and researching literature, the potential impacts on the ecological resources due to the planning in the project area have been identified as follows.
2.2.1. **Implementation and construction impacts**

2.2.1.1. **Permanent loss of agricultural land/orchards**

As in the planning of many sites, orchards and agriculture land will be totally converted into residential and other areas which will result in loss of some important habitats along with affecting food production. Agriculture is backbone to the Punjab plains and the current project will have strong impact on agricultural productivity and loss of livelihood opportunities of rural communities. Around 100,000 Acres of agricultural land will be effected due change in land use with implementation of master plan. Direct loss of productive capacity, the successive land conversions that have taken place in the past has also negatively influenced the flora and fauna of proposed area. These externalities were generally reported to have taken several forms which imposed additional burdens on existing farming conditions.

2.2.1.2. **Removal of native vegetation and habitat loss**

During implementation and construction of the project, many habitats will be totally diminished e.g. many agricultural fields. There will be removal of native vegetation and loss of habitat for the native animal species. There will be more fragmentation in the natural habitats due to extensive road network in the area.

2.2.1.3. **Effects of land conversion on rural communities**

The migration of a large proportion of non-farming population has generally reduced the overall profitability of farming by restricting certain farming operations. This will lead to a reduction in farm net income, Great loss of agricultural lands for built surfaces not only affects the population food balance, but also changes the lifestyle of rural population used to an agricultural one, causing their migration to the city or changing the economic activities profile. Overall loss of biodiversity and agricultural production as a consequence to the insertion of built spaces. Most important impact to mention will be the loss of livelihood opportunities for the local people, land owners, shop keepers etc. due to changes in land use pattern and agricultural dependent families.
2.2.1.4. Habitat damage

Due to the construction in the project site, direct, indirect or temporary damages will occur from site excavation and clearance, spoils in other habitat. Transportation during construction process will also destroy wilderness of the area. Most of the agricultural land will be damaged due to construction in the sites especially Kasur and Nankana’s agricultural land.

2.2.1.5. Wildlife disturbance and Noise pollution

Wilderness is a trait of wild areas which are far from the urban areas. Urban areas display lots of population, roads traffic, congestion, sounds of machines, etc. Due to construction and development in this area, human disturbance to ecosystems will be highest to the wild animals and birds especially. The severity of this disturbance totally depends upon duration of activity in the site, intensity and frequency. Many mammals and birds can be more disturbed by presence of workers, loud noises and operational construction plants.

2.2.1.6. Soil erosion

Due to excavation and site clearance, soil will be exposed and eroded. As a result of this soil erosion, there will be more soil deposition with runoff in canals and riverbeds which will cause siltation and sedimentation. Aquatic life can face stress from the high turbidity of suspended soil particles which will reduce light penetration. Furthermore a higher eutrophication can deplete dissolve oxygen of the water bodies providing more stress to fish and other aquatic macrophytes.

2.2.2. Operational impacts

2.2.2.1. Impacts of urban development on biodiversity

Research published by the Royal Society shows that cities retain only 8% of the native bird species and 25% of the plant species of comparable undeveloped land (Aronson et al. 2014). As supported by the published literature, broadly three things can affect urban biodiversity in the project area:

- the quality, amount, and patch size of conserved open space;
- how open space and nearby built areas are managed; and
Chapter 2: OBSERVATIONS AND INTERPRETATIONS

• the degree of open space connectivity.

Figure 2.8 Impacts of Urban Development on Biodiversity

The growth of cities may cause biodiversity to decline by fragmenting or destroying large areas of natural habitat on which many species depend. The rising human population is driving the expansion of urban areas and increasing the demand for natural resources such as timber and fossil fuels. This inevitably leads to habitat destruction which has been called "the largest factor contributing to the current global extinction event as shown in Figure 10.

2.2.2.2. Change in land use pattern

Educational, commercial and Institutional offices are proposed as residential areas which will bring an overall change in land use pattern. The environmental and social consequences of the traffic bottlenecks arising from the land use complication as a result of heavy commercialization and business activities in the area. It should be noted that effective solution to traffic problems in the area cannot be found in a strait jacket application of a particular solution but a combination of efforts. These will result in the loss of wilderness of many habitats.

2.2.2.3. Habitat degradation due to higher pollutants

Water pollution

Urbanization has adverse impacts on the air and water quality, as well as climatic conditions of the region. This poses a risk to the health of local community.
Development of more industrial units in area will result in serious water pollution in the region.

Noise pollution due to urbanization

Due to the development in the area, urban life will create big burden on natural resources. Human interruption in form of business centers and residential colonies etc. will degrade naturalness of the wild. Therefore more noise pollution will result.

Light pollution

Another important operational impact of the project on wildlife will be from lights in urban areas. Wild animals are used to conditions of wild that is low noise, low lights and naturalness. With this mega development in the area, and lots of lights from urban, residential, commercial and transportation pressure, many wild animals will be forced to leave their wild sites.

Air pollution

Increase in the settlement is directly linked with increase in vehicles and more fuel combustion. Vehicles are mobile source of pollution and fuel combustion in stationary sources, including residential, commercial, and industrial heating and cooling also release air pollutants. Air pollutants and particulates can penetrate deep into lungs and have adverse health effects along with affecting the biological diversity.

2.2.2.4. **Habitat Fragmentation**

Closely related to habitat loss is habitat fragmentation which can be defined as the transformation of a large and continuous habitat into many smaller, isolated habitats. The expansion of cities causes the fragmentation of large areas of natural habitat through the construction of roads, houses and industry. The project will simply increase fragmentation in different habitats due to change in land-use pattern.

2.2.2.5. **Bird Collisions and strikes**

There are special problems posed for birds living in or flying through cities. Research has documented that buildings and windows are the top killer of wild birds. Between one and five percent of the total migratory population die in window crashes annually (Klem, 2009). Building collisions pose further risk to endangered or threatened
species whose populations are already declining due to habitat loss, toxin loads, and other severe environmental pressures. Collision hazards include vehicles, bridges, transmission towers, power lines, and turbines, but the majority of avian deaths and injuries occur from impacts with building components such as transparent or reflective glass. Night-time lighting also interferes with avian migrations.

2.2.2.6. Change in groundwater recharge capacity

Construction closer to irrigation channels, rivers and canals affects the transport of water and sediment, so that the local hydrological equilibrium will be upset, and the effects spread through the community, causing a general ecological transition. Groundwater recharge capacity will be affected by making buildings, constructing roads and other concrete and paved structures.

2.2.3. Social Impacts of urban growth due to new development and planning

Impacts of urban growth due to new development and planning are summarized in table 14

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Positive effects</th>
<th>Negative effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economic production</td>
<td>Will be enhanced by new development in many sectors</td>
<td>Agricultural productivity will be reduced but few areas can be still utilized for this purpose</td>
</tr>
<tr>
<td>Population growth</td>
<td>Today, a majority of the world’s population lives in cities. By 2050, two-thirds of all people on the planet are projected to call urbanized areas their home. In such case new areas are needed to reduce pressure on already existing mega cites</td>
<td>Planning of the area will reduce negative impacts of urban population growth.</td>
</tr>
<tr>
<td>Pressure on megacities</td>
<td>There is already much pressure on resources and life of mega cities like Lahore, in this particular case, nearby cities’ development will reduce pressure and will shift a big population back to their own cities.</td>
<td>Keeping future growth in mind, this will have more positive impact than negative.</td>
</tr>
<tr>
<td>Livelihood</td>
<td>It will provide many livelihood</td>
<td></td>
</tr>
</tbody>
</table>
opportunities | opportunities in their regions for which people are travelling to mega cities on daily basis. | More employment will be generated in Sheikhupura, Nankana and Kasur cities. |
--- | --- | --- |
Employment | Will increase employment chances for population of Lahore city | With an implementation of this master plan, all three cities will be urbanized which will cause people of the surrounding villages to move into these areas for better job, education and healthcare facilities. This may increase security risks in the area. |
Security | New housing societies will have improved security system | Unplanned growth poses higher impact on natural resources. Therefore, when these areas will be developed |
Environmental scenario | Planned development makes more room for green spaces--trees, parks and yards--which help minimize both air and water pollution. | |
Lifestyle | Will be improved | - |
Services | New development will provide better services of infrastructure; better transport system in form of wider concrete roads, better educational and healthcare services, better water, and sewerage system in new housing | - |
Transportation | | |
Education | | |
Healthcare | | |
Sewer & water system | | |
Attract tourist | It attract more tourist activities | - |
Land and property value | It will raise land and property value of nearby society as well | - |
Touch of global feel | Such improvements provide a global feel to the citizens | - |
Triggers secondary development | It will enhance secondary development in the region | It should be planned as well. |

2.3. Mitigation Measures to lessen the impacts of development

The mitigation priorities for the project are avoidance or minimization, restoration and compensation. The aims of providing mitigation measures are to provide environmentally friendly options which can minimize the losses.
2.3.1. Impact avoiding/ minimizing

First measure to reduce the impacts of construction and operation of the project, are in form of avoiding and minimizing the impacts.

2.3.1.1. Minimizing biodiversity loss by developing Green Infrastructure

It is supported by literature that to enhance biodiversity of an area sustainable use of region’s resources is needed as shown in Figure 11. There is a need to develop good green infrastructure in the urban areas to minimize biodiversity loss. It is noted that design is important both for the conserved areas and the landscape matrix surrounding the conserved areas must be managed appropriately. Any green infrastructure can dramatically lose its biological integrity over time due to lack of appropriate management for both built and conserved lands therefore all development should be carried-out keeping in view importance of green spaces and linked biodiversity.

![Figure 2.9 Pattern of Biodiversity loss and gain (Source: UNEP Global Environment 1997)](image)

2.3.1.2. Green Infrastructure (GI)

Green Infrastructure is a network of multi-functional green space, urban and rural, which is capable of delivering a wide range of environmental and quality of life
Chapter 2: OBSERVATIONS AND INTERPRETATIONS

Green space is taken to include rivers, standing waters, coastal waters and estuaries.

Types of Gi include

- Natural and semi-natural rural and urban green spaces, including woodland, grassland, running water bodies and community forests.
- Urban parks and gardens, private gardens and institutional grounds e.g. school or college ground.
- Amenity green spaces – informal recreation spaces, play areas, outdoor sports facilities, housing green spaces, domestic gardens, community gardens, roof gardens, village greens, commons, living roofs and walls, hedges, civic spaces, and highway trees and verges.
- Urban farms, orchards, and suburban and rural farmlands.
- Graveyards and shrines.
- Green corridors – rivers and canals (including their banks), road verges and rail embankments.
- Archaeological, historic and biologically protected sites.
- Built structures in the urban areas like green roofs and walls.
Chapter 2: OBSERVATIONS AND INTERPRETATIONS

Figure 2. 10 Examples of green urban infrastructure

(a) Canal water and bank
(b) Graveyard
(c) Railroad verges
(d) Agricultural fields and private plantations
2.3.1.3. **Avoiding dumping of dredged spoil in other ecological habitats adjacent to the site:**

During construction and developmental phases of the project, the dredged spoil will be created. It should be avoided to dump such spoil in closer habitats. As excess material will degrade other habitats too.

2.3.1.4. **Protection of other habitats with fences and barriers:**

During construction phase, a fence should be used as a barrier to protect vegetation in closer area as well as agricultural land as much as possible. So that such habitats and their wildlife remain undisturbed.

2.3.1.5. **Minimization of barging disturbance to wildlife:**

Noise and disturbance may increase while barging spoil and would have effects on birds. Although this impact arising from spoil barging will not be significant, the following mitigation measures should be adopted to protect birds against excessive noise and disturbance:

- the construction workers on the barge should avoid making sudden loud noises or disturbing birds
- barging of more spoil should be scheduled in the summer to avoid the migratory period of birds in winter as far as possible.
2.3.2. Restoration and Compensation

Secondly restoration and compensation are mitigation measures to be followed if impacts are to be minimized. Restoration can be important measure in this project to value ecological resources of the area and restoring the degraded habitats is the best option available. Whereas Compensation in this project refers to rehabilitation of lost or used habitat in favorable condition. Restoration of native vegetation on Railroad and Roadside verges and river and canal banks

Railroad and roadside verges are considered as wastelands and are always underutilized. During the construction phase of the project many trees will be cut down. Unfortunately the native thorn forest tree species (Salvadora oleoides, Prosopis cineraria, Tamarix aphylla and Capparis decidua) have been totally removed from the area due to land clearance for agricultural purposes. Moreover riparian vegetation (Dalbergia sisso, Tamarix aphylla, Acacia nilotica and Populus euphratica) have also suffered a significant decline and some of the reasons are habitat loss, overexploitation and preference for fast growing exotic species like Eucalyptus. It is therefore strongly recommended to revegetate railroad and roadside verges with thorn forest species and river and canal banks with native riparian species to compensate for the loss of trees and to provide biodiversity habitat to wild animal species. This will provide compensation to the lost habitat and species.

2.3.2.1. Trees Plantation close to schools and hospitals

It will compensate for the lost trees and will also reduce Noise pollution in these sensitive urban areas.

2.3.2.2. Identification and conservation of areas important for priority animal species

There is a need to take the help of the experts for the identification and selection of areas for the conservation of native animal species that are locally of internationally threatened. This includes habitats of many reptiles and bird species including migratory birds.
2.3.2.3. Strategic planning for nature conservation through the restoration of ecological networks

For reversing habitat and species decline it is important to maintain and improve ecological connectivity between different habitat patches of a landscape. There is a need to plan for the establishment of resilient ecological networks through which movement of biota and materials can take place.

![The components of ecological networks](image)

Figure 2.12 The components of ecological networks (Town & Country Planning Association 2012)

Figure 14 shows hypothesized ecological networks where green corridor can be defined as, an area of significant green space (100 m2 or greater) with a maximum separation of 100 metres (http://www.betterbuildingspartnership.co.uk/ecological-master-plan-london) and stepping stones as, areas of land that provide stop over points in transit between core areas. Core areas are, existing areas, features, or resources of importance for biodiversity, often made up of existing designated sites (http://www.planvu.co.uk/mdc/written/cpt6.htm).

2.3.2.4. Urban agriculture and kitchen gardening

Urban agriculture or urban farming is the practice of cultivating, processing, and distributing food in or around a village, town, or city. Urban agriculture can also involve animal husbandry, aquaculture, agroforestry, urban beekeeping, and horticulture. In the developing countries, food security, nutrition, and income generation are key motivations for the practice. Direct access to fresh vegetables, fruits, and meat products through urban agriculture can improve food security and food safety and can in part compensate for the loss of agricultural land. But this is
only possible when receiving formal institutional support, becoming integrated into local town planning.

Figure 2. 13 Urban agriculture and kitchen gardening

2.3.3. Conclusion and Recommendations

It is therefore concluded that development in this area will have less impacts on the ecological resources of the area if the following recommendations will be considered during planning and implementation phases of the project

2.3.3.1. Use of native species

The removal of native species from urban areas and their replacement with non-native species drastically alters the composition of urban biological communities. The ecology of cities is therefore very different from the surrounding undeveloped areas and is dominated by exotic ornamental species. It is therefore important to promote use native plant species in urban landscaping.

2.3.3.2. EIA of all new developments

It is strongly recommended that every developmental activity in this region e.g. a housing scheme or industry should conduct prior environmental impact assessment of the proposal including its effects on local biodiversity and ecosystems.

2.3.3.3. Groundwater recharge

There should be ground water recharge zones in the area to save the aquifer depletion due to large scale construction of concrete structures. These areas should be kept pollution free to avoid contamination of the ground water.
2.3.3.4. **Rain water harvesting**

Rain water harvesting should be adopted by the locals in the new development plan to avoid water shortages and further sustainable use of water resources. It is a technique of collection and storage of rainwater into natural reservoirs or tanks, or the infiltration of surface water into subsurface aquifers (before it is lost as surface runoff). One method of rainwater harvesting is rooftop harvesting.

2.3.3.5. **Pollution control by following NEQS**

Industry in the area shall strictly follow the NEQS to avoid air and water pollutions that can affect the local biota and degrade both aquatic and terrestrial ecosystems.

2.3.3.6. **Solid waste management**

Increased urbanization is associated with increased solid waste generation. Solid waste generated from the residential areas should be segregated at source and properly recycled and disposed.

2.3.3.7. **Wastewater treatment plants**

Industrial effluents and domestic sewage shall be treated before releasing into aquatic water bodies to ensure healthy aquatic ecosystems. For this purpose wastewater treatment plants are required to be installed.

2.3.3.8. **Urban agriculture and kitchen gardening**

Major loss by the implementation of this master plan in the proposed study area is that of agricultural land that will negatively impact food supply and can result in high prices of food items from being supplied from distant places. This loss can just only in part compensated by promoting urban agriculture and kitchen gardening. But this will has to be incorporated in the developmental policy of the proposed project at the planning stage.

2.3.3.9. **Farm mechanization for increased agricultural productivity**

It is highly recommended that for the compensation of the lost agricultural land there is a need to increase agricultural production by using modern technology and seeds of high yielding crop varieties. Farmers in the area shall be provided assistance in getting loans for the purchase of farm machinery and seeds.
2.3.3.10. Tunnel Farming

Tunnel farming is a low-tech, but highly unconventional vegetable growing technique that started in the early 2000s in Pakistan. Currently, it is centered in the districts of Arifwala, Vehari and Mailsi in central Punjab with little emerging pockets in Faisalabad, Jhang, Multan and Rahim Yar Khan. According to estimates of the Punjab Agricultural Department, there are more than 200,000 acres of tunnel farms in Punjab and the trend is growing. A very high urbanization rate in Pakistan keeps creating greater demand for vegetables in the urban centers. Tunnel farmers routinely achieve an astonishing 500% yield over conventional farmers. Surprisingly, it’s not done by using exotic seeds or fertilizers. Instead, tunnel farmers adopt low-tech methods. The vegetables from tunnel farms arrive two to three months earlier than the same varieties grown conventionally in the open. Off-season arrival ensures that the farmers command higher prices and get economic benefits.

2.3.3.11. Green roofs and walls

Living roofs and walls are other options to adopt which are important components of the sustainable urban design. The roof gardens provide beautiful and pleasant environment to live and work, to help improve air quality, especially in populated areas. Green roofs of buildings perform the important functions of trapping dust, producing oxygen and providing cooling affect in the hot summer months leading to energy conservation. They also provide habitat for the urban biological diversity and are one of the ways to ensure food security.

2.3.3.12. Policy Framework for green infrastructure (GI)

Following is the suggested policy framework for developing green infrastructure in an urban context (Town & Country Planning Association 2012).

- Strategic planning of green infrastructure for the provision of a comprehensive and integrated network
- Green infrastructure should be planned using up-to-date and sound ecological evidence regarding green infrastructure.
- Wherever possible green infrastructure shall be designed to provide multiple functions, e.g. biodiversity, amenity and other social benefits can be derived
from public parks. An ecosystem-approach shall be applied to get multi-
functionality of green infrastructure.

Â Green infrastructure needs to be central to the development’s design and
must reflect and enhance the area’s locally distinctive character. They must
be integrated in the design of the development including gardens, open
spaces in the built environment.

Â Green infrastructure should contribute to biodiversity gain by safeguarding,
enhancing, restoring, and creating wildlife habitats and by integrating
biodiversity into the built environment. GI should be designed to reduce
isolation and fragmentation by increasing connectivity and assuring
movement of biota and materials across different habitat patches in a
landscape.

Â GI needs to include accessible spaces and facilitate physically active travel.
GI within a development should include attractive, engaging and safe
outdoor spaces which meet a variety of social, health and well-being needs
for local people, including contact with nature, recreation, education, active
travel (including walking and cycling), water management, landscape
amenity, and temperature regulation

Â Planning of the green infrastructure is required to be integrated with other
policy initiatives like groundwater recharge and rainwater harvesting etc.

2.3.3.13. Biotope/ habitat opportunity mapping and making ecological
action plans for individual cities.

Biodiversity and green infrastructure opportunity mapping using high resolution
satellite images, aerial photographs and finding ground realities with the help of
wildlife experts could feature as part of the Local Plan. Opportunity mapping uses
data on existing biodiversity interests, coupled with information about land use,
topology, soils, hydrology and other physical parameters to identify areas where
appropriate management can lead to the restoration or creation of new wildlife-rich
areas, as well as enhancing land or townscape characters. This will help in
developing ecological action plans for individual cities for mitigating biodiversity loss.
City ecological action plan shall have following objectives (Table 15).
Table 2.15 Objectives of city ecological action plan

<table>
<thead>
<tr>
<th>Category</th>
<th>Objective</th>
</tr>
</thead>
</table>
| Native vegetation | • Protect, expand and improve condition of naturally occurring native vegetation, including possible remnants.
 • Use of marginal land like railway embankments and road verges for the restoration of native vegetation and identification and maintenance of sites that are in good condition (figure 16). |
| Fauna | • Identification, protection and enhancement of the sites that provide habitat for priority fauna species.
 • Steps should be taken to increase the distribution and abundance of priority fauna species across the landscape. |
| Habitat connectivity | • Improve habitat connectivity across the landscape, particularly between priority sites, and between identified adjacent habitat areas. |

Figure 2.14 Railroad and roadside vegetation provides excellent corridors for the movement of biota and increase connectivity among landscape patches

2.3.3.14. Disturbance to migratory species

Due to the construction and development in the area, many migratory birds of the area will be disturbed or maybe they leave this site to visit in the future. It is therefore important to avoid or reduce construction activities during that time of the year in particular areas so as not to disturb their right-of-way. A list of birds along with their migratory season is given in table 16

Table 2.16 Detail of migratory birds in the project area shown in table below

<table>
<thead>
<tr>
<th>Scientific names</th>
<th>Common names</th>
<th>Migration season</th>
<th>Months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upupa epops</td>
<td>Hoopoe</td>
<td>Winter</td>
<td>Oct-Feb</td>
</tr>
<tr>
<td>Anas Platyrhynchos</td>
<td>Mallard</td>
<td>Winter</td>
<td>Nov-Feb</td>
</tr>
</tbody>
</table>
Chapter 2: OBSERVATIONS AND INTERPRETATIONS

<table>
<thead>
<tr>
<th>Species</th>
<th>Common name</th>
<th>Season</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gallinula chloropus</td>
<td>Common moorhen</td>
<td>Winter</td>
<td>Sept-May</td>
</tr>
<tr>
<td>Merops philippinus</td>
<td>Blue tailed bee eater</td>
<td>Summer</td>
<td>March-Sept</td>
</tr>
<tr>
<td>Actitis hypoleucus</td>
<td>Common Sand piper</td>
<td>Winter</td>
<td>Aug-Mar</td>
</tr>
<tr>
<td>Anas creca</td>
<td>Common teal</td>
<td>Winter</td>
<td>Nov-Mar</td>
</tr>
<tr>
<td>Hirundo rustica</td>
<td>Common swallow</td>
<td>Winter</td>
<td>Oct-Mar</td>
</tr>
<tr>
<td>Coturnix coturnix</td>
<td>Common Quail</td>
<td>Winter</td>
<td>Sep-Mar</td>
</tr>
<tr>
<td>Egretta garzetta</td>
<td>little egret</td>
<td>Winter</td>
<td>Oct-May</td>
</tr>
<tr>
<td>Himantopus himantopus</td>
<td>Black winged stilt</td>
<td>Winter</td>
<td>Oct-Mar</td>
</tr>
<tr>
<td>Phalacrocorax niger</td>
<td>Cormorant</td>
<td>Winter</td>
<td>Nov-Mar</td>
</tr>
<tr>
<td>Egretta alba</td>
<td>Large Egretta</td>
<td>winter</td>
<td>Dec-April</td>
</tr>
<tr>
<td>Cisticola juncidis</td>
<td>Fan-tail Warbler</td>
<td>Winter</td>
<td>Nov-Feb</td>
</tr>
<tr>
<td>Lanius vittatus</td>
<td>Bay-backed Shrike</td>
<td>Winter</td>
<td>Dec-Feb</td>
</tr>
<tr>
<td>Lanius schach</td>
<td>long tailed shrike</td>
<td>Winter</td>
<td>Nov-March</td>
</tr>
<tr>
<td>Lanius excubitor</td>
<td>Great Grey Shrike</td>
<td>Summer</td>
<td>Apr-Jul</td>
</tr>
<tr>
<td>Alcedo atthis</td>
<td>Common Kingfisher</td>
<td>Winter</td>
<td>Oct-Feb</td>
</tr>
</tbody>
</table>

2.3.3.15. Habitat and species conservation

Habitats and species of conservation value shall be protected that include many reptile and bird species. It is therefore important to set aside areas that act as their breeding grounds or nesting habitats. It is strongly recommended that areas along both banks of River Ravi and River Sutlej shall be acquired and declared as buffer zones to protect the native wildlife from human onslaughts and disturbance. In this regard help can be taken from experts of Wildlife Department and WWF-P.

2.3.3.16. Avoiding bird collision and strikes

To avoid bird collisions following measures can be taken:

- Bird-safe glazing treatments should be included like fritting, netting, permanent stencils, frosted glass, exterior screens, physical grids placed on the exterior of glazing or UV patterns visible to birds.
- Awareness campaigns for developers, architects, planners, property owners, businesses, residents and youth groups should be arranged.
Chapter 2: OBSERVATIONS AND INTERPRETATIONS

- Interior plants should be moved from the window so as not to be visible from the outside to the birds.
- Consider limiting nighttime building use by combining motion operated light sensors with daytime cleaning services. This combination will reduce light pollution and increase energy conservation.
- Where interior lighting is used at night, window coverings should be closed to block light transmission adequately.
- Consider seasonal migration needs. Unneeded interior and exterior lighting should be turned off from dusk to dawn during this period.

2.3.3.17. Restoration of native vegetation

Native species restoration should be carried out to enhance biodiversity and conservation in the area. In this regard help can be taken from Restoration Ecology Research Group of Sustainable Development Study Centre, GC University Lahore.

2.3.3.18. Reducing the effects of light pollution on biological diversity

Following are some of the recommendations for reducing effects of light pollution (Florida Fish and Wildlife Conservation Commission http://myfwc.com/conservation/you-conserve/lighting/pollution/, IDA (International Dark Sky association) Practical Guide: PG1 Introduction to light pollution (www.darksky.org)

- Keeping the light LOW (mounting the fixture as low as possible).
- Lower the wattage of all outdoor lighting both municipal and private. Over lighting reduces the eye’s ability to see outside of the lit area. In addition, excess light can produce glare, which also reduces visibility. Selecting the correct lamp wattage increases safety and reduces costs.
- Place motion sensors on essential outdoor lamps. Lighting on demand trumps a manual switch or timer. Motion sensitive switches light walkways when need.
- SHIELDED (fully shielding the light so bulbs and/or glowing lenses are not visible) cuts down on the amount of glare and light visible to the animals, so
that there is less opportunity for them to get trapped, repelled, or have their day/night patterns altered.

![Diagram of light types and sources]

Figure 2.15 Useful and other types of light from a light source http://www.askaboutireland.ie/enfo/irelands-environment/noise/light/

Figure 2.16 Fixtures that enhance and reduce light pollution (Source: http://victoria.rasc.ca/night-lighting/)

- Keeping it LONG wavelength (ambers and reds) actually makes the light that is visible seem dimmer to nocturnal animals that primarily use rod vision. Some long wavelength light sources such as low pressure sodium lights and amber and red LEDs use a fraction of the energy of their mercury halide, incandescent and even fluorescent counterparts and cut down greenhouse gas emissions.

- Closing curtains at night to keep indoor light in, especially in a multi-storied building will prevent bird crashes

2.3.3.19. Reducing ecological footprint

Following are the recommendations to reduce ecological footprint:

- Development of mass transit system will cut down carbon emissions.
Energy efficient buildings and building codes should be introduced in the urban construction to reduce energy use by heating and cooling.

Vegetation restoration and enhancement to capture and fix carbon dioxide.

Street and other lights in the public areas should be on solar energy.

Use of alternative energy resources will reduce ecological footprint.

Setting aside areas for agriculture in the project for urban agriculture and vegetables production to meet the needs of the local residents will reduce ecological footprint.
LITERATURE CONSULTED

APPENDICES
Appendix I

CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA
<table>
<thead>
<tr>
<th>Appendices I</th>
<th>Appendices II</th>
<th>Appendices III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pterocnemia pennata (Except Pterocnemia pennata pennata which is included in Appendix II)</td>
<td>Pterocnemia pennata pennata</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rhea americana</td>
<td></td>
</tr>
<tr>
<td>Sphenisciformes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spheniscidae</td>
<td>Penguins</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spheniscus humboldti</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strigiformes</td>
<td>Owls</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STRIGIFORMES spp. (Except the species included in Appendix I)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strigidae</td>
<td>Owls</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heteroglaux blewitti</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mimizuku gurneyi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ninox natalis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ninox novaeseelandiae undulata</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tytonidae</td>
<td>Barn owls</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tyto soumagnei</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sauromalus</td>
<td>varius</td>
<td></td>
</tr>
<tr>
<td>Lacertidae</td>
<td>Lizards</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gallotia simonyi</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scincidae</td>
<td>Skinks</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corucia zebrenata</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teiidae</td>
<td>Caiman lizards, tegu lizards</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crocodilurus amazonicus</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Draeena spp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tupinambis spp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Varanidae</td>
<td>Monitor lizards</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Varanus bengalensis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Varanus flavescens</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Varanus griseus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Varanus komodoensis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Varanus nebulosus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xenosauridae</td>
<td>Chinese crocodile lizard</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendices

<table>
<thead>
<tr>
<th>I</th>
<th>II</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elachistodon westermanni</td>
<td>Ptyas mucosus</td>
<td>Xenochrophis piscator</td>
</tr>
<tr>
<td>Hoplocephalus bungaroides</td>
<td></td>
<td>Micrurus diastema</td>
</tr>
<tr>
<td>Naja atra</td>
<td></td>
<td>Micrurus nigrocinctus</td>
</tr>
<tr>
<td>Naja kaouthia</td>
<td></td>
<td>(Honduras)</td>
</tr>
<tr>
<td>Naja mandalayensis</td>
<td></td>
<td>(Honduras)</td>
</tr>
<tr>
<td>Naja naja</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naja oxiana</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naja philippinensis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naja sagittifera</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naja samarensis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naja siamensis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naja sputatrix</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naja sumatran</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ophiophagus hannah</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melanochelys tricarinata</td>
<td></td>
<td>Ocada glyphistoma</td>
</tr>
<tr>
<td>Morelia ocellata</td>
<td></td>
<td>Ocada philipeni</td>
</tr>
<tr>
<td>Pangshura tecta</td>
<td></td>
<td>(China)</td>
</tr>
<tr>
<td>Pangshura spp.</td>
<td>Orlitia borneensis</td>
<td>Sacalia bealei</td>
</tr>
<tr>
<td></td>
<td>(Except the species included in Appendix I)</td>
<td>Sacalia pseudocellata</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sacalia quadriocellata</td>
</tr>
<tr>
<td>Platysternidae Big-headed turtle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Platysternon megacephalum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Podocnemididae Afro-American side-necked turtles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erymnochelys</td>
<td></td>
<td>Podocnemis spp.</td>
</tr>
<tr>
<td>madagascariensis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peltoccephalus dumerilianus</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Go to PC settings to activate Windows)
Trionychidae
- Softshell turtles, terrapins
 - *Apalone spinifera atra*
 - *Aspideretes gangeticus*
 - *Aspideretes hurum*
 - *Aspideretes nigricans*

<table>
<thead>
<tr>
<th>Amyda cartilaginea</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chitra spp.</td>
</tr>
<tr>
<td>Lissemys punctata</td>
</tr>
<tr>
<td>Lissemys scutata</td>
</tr>
<tr>
<td>Pelochelys spp.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Palea steindachneri (China)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pelodiscus axenaria (China)</td>
</tr>
<tr>
<td>Pelodiscus maackii (China)</td>
</tr>
<tr>
<td>Pelodiscus parviformis (China)</td>
</tr>
<tr>
<td>Rafetus swinhoei (China)</td>
</tr>
</tbody>
</table>
Appendix ï Ⅱ

THE PUNJAB WILDLIFE (PROTECTION, PRESERVATION, CONSERVATION AND MANAGEMENT) (AMENDMENT) ACT, 2007
FIRST SCHEDULE

See Section 2(d)

PART - 1

Wild birds and animals which may be hunted on an ordinary shooting licence.

A. BIRDS

<table>
<thead>
<tr>
<th>Name of species</th>
<th>Bag limit or number allowed per gun</th>
<th>Time and season when hunting permitted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category one</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. All the ducks within the family anatidae, including the tree ducks, diving ducks, surface feeding ducks except those ducks listed under the Third Schedule as protected or listed hereunder in the First Schedule</td>
<td>Not more than ten ducks of all species per day</td>
<td>1st October to 31st March on Saturday & Sunday</td>
</tr>
<tr>
<td>Category Three</td>
<td></td>
<td>1st October to 1st March</td>
</tr>
<tr>
<td>Snipes, Plovers, Waders and allied Waterfowl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Fantail Snipe (Capella gallinago)</td>
<td>Eight only per day</td>
<td>Ditto</td>
</tr>
<tr>
<td>5. Jack Snipe, (Capella minima)</td>
<td>-do-</td>
<td>Ditto</td>
</tr>
<tr>
<td>6. Purple moor hen, (Porphyrio porphyrio)</td>
<td>Two only per day</td>
<td>Ditto</td>
</tr>
<tr>
<td>7. Moor hen, (Gallinus chloropus)</td>
<td>Four only per day</td>
<td>Ditto</td>
</tr>
<tr>
<td>8. Coot, (Fulica atra)</td>
<td>Twelve only per day</td>
<td>Ditto</td>
</tr>
<tr>
<td>9. Red wattled lapwing (Vanellus indicus)</td>
<td>Two only per day</td>
<td>Ditto</td>
</tr>
<tr>
<td>10. White Tailed Lapwing, (Vanellus leucurus)</td>
<td>Two only per day</td>
<td>Ditto</td>
</tr>
<tr>
<td>11. Grey plover or black bellied plover</td>
<td>Two only per day</td>
<td>Ditto</td>
</tr>
</tbody>
</table>
Category Four

Pheasianids

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Limitations</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>See See (Ammoperdix griseogularis)</td>
<td>Not more than five per day</td>
<td>15<sup>th</sup> November to 15 February</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>on Sunday only</td>
</tr>
<tr>
<td>21</td>
<td>Black partridge (Francolinus francolinus)</td>
<td>Not more than six per day</td>
<td>-do-</td>
</tr>
<tr>
<td>22</td>
<td>Grey partridge (Francolinus pondicerianus)</td>
<td>-do-</td>
<td>-do-</td>
</tr>
<tr>
<td>23</td>
<td>Common quail (Coturnix coturnix)</td>
<td>Fifty only per day</td>
<td>15<sup>th</sup> August to 15<sup>th</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>April</td>
</tr>
<tr>
<td>24</td>
<td>Black Breasted or Rain Quail (Coturnix coromandelica)</td>
<td>Not more than six per day</td>
<td>1<sup>st</sup> August to 30<sup>th</sup> September</td>
</tr>
</tbody>
</table>

Category Five

Pigeons and doves

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Limitations</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>Blue rock pigeon, Columba livia</td>
<td>Ten only per day</td>
<td>1<sup>st</sup> October to 1<sup>st</sup> March</td>
</tr>
<tr>
<td>26</td>
<td>Common ring dove, (Streptopelia decaocto)</td>
<td>Six only per day</td>
<td>-do-</td>
</tr>
</tbody>
</table>

Category Five

Pigeons and doves

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Limitations</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>Rufous turtle dove, (Streptopelia orientalis)</td>
<td>Ten only per day</td>
<td>-do-</td>
</tr>
<tr>
<td>28</td>
<td>Little brown dove or Senegal dove, (Streptopelia senegalensis)</td>
<td>Six only per day</td>
<td>1<sup>st</sup> October to 1<sup>st</sup> March</td>
</tr>
<tr>
<td>29</td>
<td>Long tailed persian dove (Strepeteria turtur arenicola)</td>
<td>-do-</td>
<td>1<sup>st</sup> October to 1<sup>st</sup> March</td>
</tr>
<tr>
<td>33(i)</td>
<td>Psittacidae (Parakeets)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(excluding Rose Ringed Parakeet)</td>
<td>Three birds per day except Alexandrine Parakeet</td>
<td>1st August to 31st January</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>33 (ii)</th>
<th>Cuculidae (Cuckoos)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Three birds per day</td>
</tr>
</tbody>
</table>

Category Seven

Birds of Prey

34	Hawks	Three birds per day	1st November to 1st March
35	Buzzards	-do-	-do-
36	Harriers	-do-	-do-
37	Falcons	-do-	1st September to 31st December
38	Lugger Falcon	-do-	15th June to 15th December
38 (i)	*Strigidae (*Owls*)*	-do-	1st August to 31st January

Category Eight

39.	**House Sparrow (*Passor domesticus*)**	No limit	1st August to end of February
40.	Estrildidae (*Munias*) (excluded)	-	-
41	Ploceidae (*Bayas, Weaver bird*) (excluded)	-	-
42	*Sturnidae (Mynas)*	Three birds per day	1st August to 31st January
43	Motacillidae (*Wagtails*)	-do-	-do-
44	Timaliidae (*Babblers*)	-do-	-do-
45	Sylvidae (*Warblers*)	-do-	-do-
46	Pycnonotidae (*Bulbuls*)	-do-	-do-
47	Phipiduridae (*Fly catchers*)	-do-	-do-
Third Schedule

Category Six

Egrets and herons

26. All Egrets, Herons, Night herons and Bitterns of the family *Ardéidae* including Purple heron (*Ardea purpurea*), Chestnut bittern (*Ixobrychus cinnamomeus*), and Common Bittern (*Botaurus stellaris*), *Cattle egret* (*Bubulcus ibis*) and Large egret (*Egretta alba*)

Category Seven

Storks

27. All storks of the family *Ciconiidae* including White stork (*Ciconia ciconia*), White necked stork (*Ciconia episcopus*), Black stork (*Ciconia nigra*), Black necked stork (*Ephippiorhynchus asiaticus*) and Painted stork (*Mycteria leucocephala*)

Category Eleven

Plovers, Stone curlews, Waders, Water birds and Gallinules

32. Water rail (*Rallus aquaticus*)

33. *White breasted water hen* (*Amaurornis phoenicurus*)

34. Water cock (*Gallicrex cinerea*)

35. Pheasant tailed Jacana (*Hydrophasianus chirurgus*)

52. Wood pigeon (*Columba palumbus*)

53. Green pigeon (*Treron Phoenicoptera*)

54. Spotted Dove (*Streptopelia chinensis*)

55. *Red turtle dove* (*Streptopelia tranquebarica*)

Category Thirteen

Birds of Prey

56. *Eagles, Vultures and Kites*
Mammals

61. Leopard cat (*Felis benghalensis*)
62. Caracal (*Felis caracal*)
63. Desert cat (*Felis libyca*)
64. Jungle cat (*Felis chaus*)
65. Fishing cat (*Felis viverrina*)
66. Himalayan palm civet (*Paguma larvata*)
67. Small Indian mongoose (*Herpestes auropunctatus*)
68. Common Indian mongoose (*Herpestes mungo*)
69. Ruddy mongoose (*Herpestes smithi*)

C: REPTILES

85. All monitor lizards of the genus *Varanus* and Spiny tailed lizards of the genus *Uromastrix*
86. All Snakes of the family *Colubridae* containing non-poisonous and beneficial snakes and the genus *Python*
87. All Crocodiles including Mugger, *Crocodilus palustris* and the fish eating crocodile or gavial *Gavialis gangeticus*
88. All Species of Order *Chelonia*
PLATES
Plate 1

A: Wastewater pond having aquatic species and grasses in a village near Muredke

B: Wastewater pond showing abundant growth of exotic *Eichhornia crassipes*
Plate 2

A: Wastewater pond having aquatic species and grasses

B: A brick kiln near Sultan Town Muredke
Plate 3

A: Master Plan of Lahore Division can help in better management of these areas.

B: Graveyards are part of green infrastructure that provide biodiversity habitat.
Plate 4

A: Railroad verges can provide excellent sites for the restoration of native vegetation

B: Calotropis, Suaeda and grasses along a railway tract near Changa Manga
Plate 5

A: Railroad verges act as landscape corridors that allow the movement of biota across different habitat patches (near Pattoki)

B: Roadside verges act as landscape corridors that allow the movement of biota across different habitat patches (Faizpur)
Plate 6

A: Better planning is required to manage towns and villages in the study area

B: Wastelands in the urban areas provide biodiversity habitat
Plate 7

A: Potato fields around Shikhupura

A: Mustard fields around Shikhupura
Plate 8

A: Wheat and sugarcane are important crops in the study area

B: Agroforestry using bamboo plantation and seasonal vegetables and mustard
Plate 9

A: Mixed farming using potato crop and Bamboo and Eucalyptus plantations near Kasur

B: Trees in fields act as shelter belts and provide habitat to biodiversity
Plate 10

A: Native tree species like *Dalbergia sissoo* and *Acacia nilotica* are needed to be planted on a larger scale

B: Native vegetation on canal bank
Plate 11

A: *Eucalptus* plantation around Farooqabad canal

B: Vegetated banks of upper Gugera branch canal providing wildlife corridors
Plate 12

A: Natural vegetation is a source of livelihood for local people. *Ckick* making from *Saccharum* Near Farooqabad

B: *Polygonum sp.* growing in canal water
Plate 13

A: Guava and mango orchards

B: Exotic *Pistai* growing in River Sutlej
Plate 14

A: Along with providing fish rivers provide many services to local community (River Sutlej near Kasur)

B: Aesthetic appeal is one of the services provided by the rivers to people
Appendix-II

Environmental Monitoring Report
ENVIRONMENTAL MONITORING REPORT

Lahore Division Master Plan

To

Harris Engineering and Management Consultants (HEMC)

by

SOLUTION ENVIRONMENTAL & ANALYTICAL LABORATORY
Plot# 12, Water Avenue Green View Society Off Kacha Jail Road Kotlakhpat Lahore
Ph# 042-35922295-6
WEB: www.seal.com.pk
Table of Contents

DISCLAIMER .. i

ABBREVIATIONS .. ii

UNITS iii

1. **Introduction** .. 1-1
 1.1 Project Background .. 1-1
 1.2 Objectives ... 1-4
 1.3 Scope of Services .. 1-4
 1.4 Project Location .. 1-4
 1.4.1 Ambient Air Quality Locations: .. 1-7
 1.4.2 Noise Monitoring Locations ... 1-7
 1.4.3 Surface water Sampling Locations .. 1-8
 1.4.4 Wastewater Sampling Locations ... 1-9
 1.4.5 Groundwater Sampling Locations .. 1-9

2. **Methodology** .. 2-1
 2.1 Survey Planning .. 2-1
 2.1.1 Identification of Monitoring Locations .. 2-1
 2.1.2 Monitoring Plan .. 2-1
 2.2 Sampling and Analysis Methods ... 2-2
 2.2.1 Ambient Air Quality Monitoring .. 2-2
 2.2.2 Noise Level ... 2-3
 2.2.3 Water .. 2-4

3. **Results and Discussion** .. 3-1
 3.1 Ambient Air Quality ... 3-1
 3.2 Noise ... 3-4
 3.3 Water Sampling .. 3-5
 3.3.1 Groundwater ... 3-5
 3.3.2 Surface Water Sampling (Canals) .. 3-9
List of Tables

Table 1-1: Location sites for Ambient Air Quality ...1-7
Table 1-2: Location sites for Noise Monitoring ..1-7
Table 1-3: Location Sites for Surface water Sampling- Canal ...1-8
Table 1-4: Location Sites for Surface water Sampling- River ...1-9
Table 1-5: Location Sites for Wastewater Sampling ...1-9
Table 1-6: Location sites for Groundwater Sampling ..1-9
Table 2-1: Methodology of Ambient Air Quality Monitoring ...2-2
Table 2-2: Water Testing Methods ..2-6
Table 3-1: Ambient Air Quality Monitoring at Different Locations in Section I3-1
Table 3-2: Noise Monitoring at Different Locations in Section II ..3-4
Table 3-3: Groundwater Sampling at Different Locations (Lahore) ..3-5
Table 3-4: Surfacewater and Wastewater Sampling at Various Location3-9
Table 3-5: Wastewater Sampling from Drains ...3-11
Table 3-6: Surfacewater Sampling at Various Location (Rivers) ...3-14
List of Figures

Figure 1-1: Proposed Project Area Map...1-2
Figure 1-2: Project Area Map...1-3
Figure 1-3: Monitoring Locations (Source: Monitoring Locations given by HEMC)..............1-5
DISCLAIMER

This report is produced in compliance with the Client Request for M/S Harris Engineering and Management Consultants (HEMC) via letter No: HEMC/SEAL/LMP/ENV/01. The information contained in this report was collected and produced from site visit and monitoring data. The information supplied and contained in this report is, to the best of our knowledge, correct and up to date. Solution Environmental & Analytical Laboratory (SEAL) accepts no responsibility for changes made to this document by any third party once report is submitted to the client.
ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>Ambient Air</td>
</tr>
<tr>
<td>AM</td>
<td>Angle Marker</td>
</tr>
<tr>
<td>APHA</td>
<td>American Public Health Administration</td>
</tr>
<tr>
<td>BDL</td>
<td>Below Detection Limit</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon Dioxide</td>
</tr>
<tr>
<td>CO</td>
<td>Carbon Monoxide</td>
</tr>
<tr>
<td>DW</td>
<td>Drinking Water</td>
</tr>
<tr>
<td>EPA</td>
<td>Environmental Protection Agency</td>
</tr>
<tr>
<td>GW</td>
<td>Groundwater</td>
</tr>
<tr>
<td>MW</td>
<td>Megawatt</td>
</tr>
<tr>
<td>NO</td>
<td>Nitrogen Oxide</td>
</tr>
<tr>
<td>NO₂</td>
<td>Nitrogen Dioxide</td>
</tr>
<tr>
<td>NOx</td>
<td>Oxides of Nitrogen</td>
</tr>
<tr>
<td>NEQS</td>
<td>National Environmental Quality Standards</td>
</tr>
<tr>
<td>NL</td>
<td>Noise Level</td>
</tr>
<tr>
<td>NTDC</td>
<td>National Transmission and Despatch Company</td>
</tr>
<tr>
<td>PEPA</td>
<td>Pakistan Environmental Protection Act 1997</td>
</tr>
<tr>
<td>PM</td>
<td>Particulate Matter</td>
</tr>
<tr>
<td>PID</td>
<td>Photo Ionization Detector</td>
</tr>
<tr>
<td>SO₂</td>
<td>Sulphur Dioxide</td>
</tr>
<tr>
<td>SOP</td>
<td>Standard Operating Procedures</td>
</tr>
<tr>
<td>SEAL</td>
<td>Solution Environmental & Analytical Laboratory</td>
</tr>
<tr>
<td>SW</td>
<td>Surface Water</td>
</tr>
<tr>
<td>T/L</td>
<td>Transmission Lines</td>
</tr>
<tr>
<td>USEPA</td>
<td>United States Environmental Protection Agency</td>
</tr>
<tr>
<td>VOC</td>
<td>Volatile Organic Compounds</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>WW</td>
<td>Wastewater</td>
</tr>
</tbody>
</table>
UNITS

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>Meter</td>
</tr>
<tr>
<td>°C</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>sec</td>
<td>Seconds</td>
</tr>
<tr>
<td>ppm</td>
<td>Parts per Million</td>
</tr>
<tr>
<td>mg/l</td>
<td>Milligram per Litre</td>
</tr>
<tr>
<td>mg/Nm³</td>
<td>Milligram per Normal cubic meter</td>
</tr>
<tr>
<td>µg/m³</td>
<td>Microgram per cubic meter</td>
</tr>
</tbody>
</table>
CHAPTER - I

INTRODUCTION
1. Introduction

This section describes the project location and scope of services performed by SEAL.

1.1 Project Background

Lahore commands a strategic, political and administrative role as the capital of the Punjab Province and the second largest city of Pakistan. It is situated in the north eastern part of Pakistan with its center lying within 25 km of the international border with India and occupies a focal position in the Upper Indus Plain located along the left bank of River Ravi. The city has grown along the historic route linking central Asia with sub-continent. In terms of cultural, recreational, commercial, educational and health services, Lahore's area of influence is well beyond its metropolitan boundaries and extends deep into the province and the international sphere between 1951 and 1965 the population and built up area of the city increased two folds. The city continued to grow up and by 1998; Lahore was transformed into a metropolis with a population of about 5.18 million and a developed area of about 300 square km. At present the developed area has been increase up to 469 SQ KM with population almost 10 million. The prevailing master plan of Lahore Metropolitan Area was notified in the year 2004 for the period up to 2021. The study area, for the purpose of Integrated Master Plan of Lahore follows Lahore Metropolitan Area boundaries under the jurisdiction of LDA. The completion of different developmental projects and expansion of the city due to rapid urbanization has changed the overall character of the area. Moreover this IMP 2021 is only for the Lahore city. The situation in division due to rapid urbanization, the industries and residencies are growing without any plan. Therefore, considering the whole division as Project Area and available planning documents, as a single Plan Master Plan of Lahore Division is prepared by earmarking the existing and proposed areas for industrial, residential, special development zones and allied land uses. The project area map is shown in figure below:-
Introduction

Figure 1-1: Proposed Project Area Map
Figure 1-2: Project Area Map
Lahore Division is an administrative division of Punjab Province, Pakistan and called the third tier of government. Lahore statistical division contains the districts of Lahore, Nankana Sahib, Kasur, and Shekhupura.

1.2 Objectives

The objective of the study is to:

- Comply with the regulatory requirements of the project;
- Monitor air, water, and noise level in study area/survey area;

1.3 Scope of Services

The environmental monitoring was conducted at advised locations master plan for following environmental parameters.

- Noise Level Monitoring
- Ambient Air Quality Monitoring
- Water Quality Sampling and Analysis

1.4 Project Location

Locations for sampling and monitoring of required environmental parameters were identified by the HEMC representatives on master plan in 4 districts of Lahore division i.e. of Lahore, Nankana Sahib, Kasur, and Shekhupura. The sampling points of air, noise and waste sampling is shown in map below-:
Introduction

Figure 1-3: Monitoring Locations (Source: Monitoring Locations given by HEMC)
Introduction
1.4.1 Ambient Air Quality Locations:
Following sites were selected ambient air on Master Plan:

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>District</th>
<th>X Coordinate</th>
<th>Y Coordinate</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA 01</td>
<td>Sheikhopura</td>
<td>73°51'24.487"E</td>
<td>31°44'36.325"N</td>
</tr>
<tr>
<td>AA 02</td>
<td>Nankana sahib</td>
<td>73°30'25.872"E</td>
<td>31°33'4.325"N</td>
</tr>
<tr>
<td>AA 03</td>
<td>Kasur</td>
<td>73°52'49.234"E</td>
<td>31°5'8.326"N</td>
</tr>
<tr>
<td>AA 04</td>
<td>Lahore</td>
<td>74°21'7.565"E</td>
<td>31°27'16.518"N</td>
</tr>
<tr>
<td>AA 05</td>
<td>Lahore</td>
<td>74°14'18.139"E</td>
<td>31°20'36.142"N</td>
</tr>
<tr>
<td>AA 06</td>
<td>Nankana sahib</td>
<td>73°58'7.621"E</td>
<td>31°24'32.725"N</td>
</tr>
<tr>
<td>AA 07</td>
<td>Sheikhopura</td>
<td>73°37'34.862"E</td>
<td>31°49'35.107"N</td>
</tr>
<tr>
<td>AA 08</td>
<td>Kasur</td>
<td>74°21'59.802"E</td>
<td>31°1028.611"N</td>
</tr>
<tr>
<td>AA 09</td>
<td>Sheikhopura</td>
<td>74°15'12.170"E</td>
<td>31°48'33.968"N</td>
</tr>
<tr>
<td>AA 10</td>
<td>Sheikhopura</td>
<td>74°12'12.564"E</td>
<td>31°34'45.146"N</td>
</tr>
<tr>
<td>AA 11</td>
<td>Sheikhopura</td>
<td>73°59'56.916"E</td>
<td>30°56'39.571"N</td>
</tr>
<tr>
<td>AA 12</td>
<td>Sheikhopura</td>
<td>74°36'081"E</td>
<td>31°40'7.270"N</td>
</tr>
<tr>
<td>AA 13</td>
<td>Sheikhopura</td>
<td>73°44'10.173"E</td>
<td>31°34'57.274"N</td>
</tr>
<tr>
<td>AA 14</td>
<td>Lahore</td>
<td>74°12'27.785"E</td>
<td>31°15'21.141"N</td>
</tr>
<tr>
<td>AA 15</td>
<td>Lahore</td>
<td>73°59'27.387"E</td>
<td>31°14'14.609"N</td>
</tr>
<tr>
<td>AA 16</td>
<td>Lahore</td>
<td>74°29'38.886"E</td>
<td>31°241.793"N</td>
</tr>
</tbody>
</table>

1.4.2 Noise Monitoring Locations
Following sites were selected noise monitoring for master plan of Lahore Division

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>District</th>
<th>X Coordinate</th>
<th>Y Coordinate</th>
</tr>
</thead>
<tbody>
<tr>
<td>NL 01</td>
<td>Sheikhopura</td>
<td>73°52'9.705"E</td>
<td>31°44'22.543"N</td>
</tr>
<tr>
<td>NL 02</td>
<td>Sheikhopura</td>
<td>73°38'0.526"E</td>
<td>31°49'13.857"N</td>
</tr>
</tbody>
</table>
Environmental Monitoring of Master Plan Lahore Division

1.4.3 Surface water Sampling Locations

The sites selected for Surface water sampling were as follow:

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Water Channel</th>
<th>X Coordinate</th>
<th>Y Coordinate</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW 03</td>
<td>Lahore Branch Canal</td>
<td>74°6’48.636”E</td>
<td>31°19’44.589”N</td>
</tr>
<tr>
<td>SW 04</td>
<td>Qadirabad Abad Balloki Link Canal</td>
<td>73°52’23.294”E</td>
<td>31°38’0.141”N</td>
</tr>
<tr>
<td>SW 05</td>
<td>Lahore BRB Canal</td>
<td>74°30’20.721”E</td>
<td>31°28’8.132”N</td>
</tr>
<tr>
<td>SW 06</td>
<td>Upper Chenab Canal</td>
<td>74°5’49.281”E</td>
<td>31°42’45.108”N</td>
</tr>
<tr>
<td>SW 07</td>
<td>ButcherKhana Distributary</td>
<td>74°12’44.791”E</td>
<td>31°20’36.892”N</td>
</tr>
</tbody>
</table>
Table 1-4: Location Sites for Surface water Sampling- River

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>River</th>
<th>X Coordinate</th>
<th>Y Coordinate</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW 01</td>
<td>Down Stream Of Ravi River</td>
<td>74°17'9.214"E</td>
<td>31°36'0.760"N</td>
</tr>
<tr>
<td>SW 02</td>
<td>Upper Stream Of Ravi River</td>
<td>74°19'19.640"E</td>
<td>31°37'32.904"N</td>
</tr>
<tr>
<td>SW 08</td>
<td>River Sutlej</td>
<td>74°26'0.991"E</td>
<td>30°57'48.965"N</td>
</tr>
</tbody>
</table>

1.4.4 Wastewater Sampling Locations

The sites selected for Wastewater sampling were as follows:

Table 1-5: Location Sites for Wastewater Sampling

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Location/Drainage Name</th>
<th>X Coordinate</th>
<th>Y Coordinate</th>
</tr>
</thead>
<tbody>
<tr>
<td>WW 1</td>
<td>Near Sheikhupura (near RWP-LHR Rail track)</td>
<td>74°17'43.612"E</td>
<td>31°38'51.241"N</td>
</tr>
<tr>
<td>WW 2</td>
<td>Drain Near Kasur (near Raiwind Kasur Road)</td>
<td>72°24'31.867"E</td>
<td>31°39'8.044"N</td>
</tr>
<tr>
<td>WW 3</td>
<td>Hudyara Drain</td>
<td>74°16'6.047"E</td>
<td>31°22'55.310"N</td>
</tr>
<tr>
<td>WW 4</td>
<td>Nanakana Sahib (near Bucheki)</td>
<td>73°40'56.478"E</td>
<td>31°26'17.761"N</td>
</tr>
</tbody>
</table>

1.4.5 Groundwater Sampling Locations

Groundwater samples were collected from following sampling locations:

Table 1-6: Location sites for Groundwater Sampling

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>District</th>
<th>X Coordinate</th>
<th>Y Coordinate</th>
</tr>
</thead>
<tbody>
<tr>
<td>GW 01</td>
<td>Kasur</td>
<td>74°26'39.206"E</td>
<td>31°24'1.793"N</td>
</tr>
<tr>
<td>GW 02</td>
<td>Sheikhopura</td>
<td>73°53'14.775"E</td>
<td>31°36'40.989"N</td>
</tr>
<tr>
<td>GW 03</td>
<td>Lahore</td>
<td>74°25'5.064"E</td>
<td>31°23'2.963"N</td>
</tr>
<tr>
<td>GW 04</td>
<td>Nankana sahib</td>
<td>73°28'41.437"E</td>
<td>31°34'58.339"N</td>
</tr>
<tr>
<td>GW 05</td>
<td>Lahore</td>
<td>74°14'17.442"E</td>
<td>31°211.803"N</td>
</tr>
<tr>
<td>GW 06</td>
<td>Nankana sahib</td>
<td>73°57'0.372"E</td>
<td>31°24'17.447"N</td>
</tr>
<tr>
<td>GW 07</td>
<td>Sheikhopura</td>
<td>73°53'0.372"E</td>
<td>31°44'10.041"N</td>
</tr>
<tr>
<td>GW 08</td>
<td>Sheikhopura</td>
<td>73°38'46.197"E</td>
<td>31°48'45.852"N</td>
</tr>
<tr>
<td>GW 09</td>
<td>Kasur</td>
<td>73°53'53.316"E</td>
<td>31°6'5.257"N</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>----------------</td>
<td>--------------</td>
</tr>
<tr>
<td>GW 10</td>
<td>Sheikhopura</td>
<td>74°15'20.907"E</td>
<td>31°47'39.992"N</td>
</tr>
<tr>
<td>GW 11</td>
<td>Sheikhopura</td>
<td>74°11'35.275"E</td>
<td>31°34'6.488"N</td>
</tr>
<tr>
<td>GW 12</td>
<td>Kasur</td>
<td>73°58'36.626"E</td>
<td>30°57'54.009"N</td>
</tr>
<tr>
<td>GW 13</td>
<td>Sheikhopura</td>
<td>74°7'38.975"E</td>
<td>31°39'55.740"N</td>
</tr>
<tr>
<td>GW 14</td>
<td>Lahore</td>
<td>74°12'44.603"E</td>
<td>31°14'50.387"N</td>
</tr>
<tr>
<td>GW 15</td>
<td>Lahore</td>
<td>74°0'1.495"E</td>
<td>31°13'36.301"N</td>
</tr>
<tr>
<td>GW 16</td>
<td>Lahore</td>
<td>74°21'25.624"E</td>
<td>31°25'42.415"N</td>
</tr>
</tbody>
</table>
CHAPTER – II

METHODOLOGY
2. Methodology

Following is the brief description of methodology adopted for this environmental monitoring:

2.1 Survey Planning

The project started with a planning of project activities with a management of the HEMC.

2.1.1 Identification of Monitoring Locations

Locations for the sampling and monitoring of required environmental parameters were identified and finalized by the HEMC representatives in consultation with SEAL team. Following criterion was used to finalize the sampling locations:

- Area where there will be project activities;
- Present environmental conditions at the site.

2.1.2 Monitoring Plan

On the basis of identified sampling locations a monitoring plan was developed in order to achieve precision and accuracy in the monitoring and sampling of the required environmental parameters. The monitoring plan was developed in consultation with HEMC representatives. Plan of 7 days was formulated including travelling time. Project was started on Wednesday 2-12-2015 and completed on Tuesday- 08-12-2015.
2.2 Sampling and Analysis Methods

The sampling and testing methods are given in following sections of the report.

2.2.1 Ambient Air Quality Monitoring

Ambient air quality monitoring was conducted at advised sampling locations to assess the concentration of priority pollutants (Carbon monoxide, Oxides of Nitrogen (NO_x), Sulphur dioxide (SO_2), PM_{2.5} and PM_{10}). Selection of sampling location was based on the environmental factors including wind direction on the particular day and amount of turbulence in the air etc. The sampling is conducted for the period of 24 hour.

Reference method used for the measurements are included as Table 2.2 while the description is provided in subsequent sections.

Table 2-1: Methodology of Ambient Air Quality Monitoring

<table>
<thead>
<tr>
<th>Air Pollutant</th>
<th>Monitoring Technique</th>
<th>Instrument Used</th>
<th>Reference Method</th>
<th>Measurement Range</th>
<th>Lowest Detection Limit</th>
<th>Sampling Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon monoxide (CO)</td>
<td>Non Dispersive Infrared Absorption (NDIR)</td>
<td>HORIBA APNA 360 CO Analyzer</td>
<td>40 CFR Part 50, App. C (US-EPA)</td>
<td>0 – 100 ppm</td>
<td>0.02 ppm</td>
<td>24 hour</td>
</tr>
<tr>
<td>Sulfur Dioxide (SO_2)</td>
<td>UV fluorescence (UVF)</td>
<td>HORIBA APNA 360 SO_2 Analyzer</td>
<td>EQSA-0197-114 (US-EPA)</td>
<td>0-0.5 ppm</td>
<td>0.5 ppb</td>
<td>24 hour</td>
</tr>
<tr>
<td>Nitrogen Dioxide (NO_x)</td>
<td>Reduced Pressure Chemiluminescence (CLD)</td>
<td>HORIBA APNA 360 NO_x Analyzer</td>
<td>40 CFR Part 50, App F (US-EPA)</td>
<td>0-0.5 ppm</td>
<td>0.5 ppb</td>
<td>24 hour</td>
</tr>
<tr>
<td>Particulate Matter (PM_{10}) and PM_{2.5}</td>
<td>Integrated Sampling Technique</td>
<td>High Volume Air Sampler</td>
<td>40 CFR Part 50, App J (US-EPA)</td>
<td>0 – 1000 µg/m^3</td>
<td>2 µg/m^3</td>
<td>24 hour</td>
</tr>
</tbody>
</table>

2.2.1.1 Carbon monoxide (CO)

Carbon monoxide (CO) was monitored using HORIBA APNA 360 CO Analyzer. The APNA-360 CO analyzer measures CO concentration using a non-dispersive infrared absorption method that is based on the nature of CO in that it absorbs special infrared light. Measurement range of the analyzer is 0-100 ppm. Continuous data was recorded for duration of 24 hour.

2.2.1.2 Oxides of Nitrogen (NO_x)

Oxides of Nitrogen (NO_x) was monitored using HORIBA APNA 360 NO_x Analyzer. The APNA-360 NO_x analyzer measures NO,
NO$_2$ and NO$_x$ using chemiluminescence (CLD) method with the help of chemical reaction between NO$_2$ and O$_3$. Measurement range of the analyzer is 0-0.5 ppm. Continuous data was recorded for period of 24 hr.

2.2.1.3 Sulphur dioxide (SO$_2$)

SO$_2$ Sulphur dioxide was monitored using HORIBA APNA 360 SO$_2$ Analyzer. The APNA-360 SO$_2$ analyzer measures SO$_2$ using UV fluorescence method that operates on the principle that when the SO$_2$ molecules contained in the sample gas are excited by ultraviolet radiation they emit a characteristic fluorescence in the range of 220-240 nm. This fluorescence is measured and the SO$_2$ concentration is obtained from changes in the intensity of the fluorescence. Measurement range of the analyzer is 0-0.5 ppm. Continuous data was recorded for duration of 24 hrs.

2.2.1.4 Particulate Matter (PM$_{10}$ and PM$_{2.5}$)

Particulate matter concentration in terms of PM$_{10}$ and PM$_{2.5}$ was monitored in the ambient air with the help of High Volume Air Sampler. Measurement range of the equipment is 2-1000 μg/m3 with lowest detection range of 2 μg/m3. PM$_{10}$ and PM$_{2.5}$ sampling was conducted for period of 24 hour at identified sampling locations with the help of fiberglass filters. The filters were properly stored and placed in the vacuum zipper bag in order to avoid moisture and transported to SEAL Laboratory for detection of PM$_{10}$.

2.2.1.5 Weather Station

A weather station was installed on each point measurement to assess the environmental parameters like Ambient Temperature, Relative Humidity, Wind Speed and direction and other weather conditions.

2.2.2 Noise Level

A noise level monitoring was conducted at identified locations using portable Digital Sound Meter (TM, 103). All noise monitoring was conducted in accordance with the guidance set out in BS 7445:2003. Measurements were made using Class 1 Integrating-Averaging Sound Level Meters as defined in IEC 61672:2003. Meters were calibrated and checked before and after each measurement period by using sound level calibrator.
2.2.3 Water

Following methodology was adopted for water sampling and analysis:

2.2.3.1 Sample Collection

The water samples were collected from identified sampling points. The sampling was carried out in accordance to the Standard Operating Procedures (SOP) based on the recognized methods of United State Environmental Protection Agency (USEPA), World Health Organization (WHO) and American Public Health Administration (APHA) for water sampling and analysis.

2.2.3.2 Measurement of Field Parameters

Parameters that quickly degrade after they are sampled must be tested in the field. Following parameters were measured in field that can significantly change during storage and transportation. These includes:

- pH (Measured at site)
- Odor
- Color
- Clarity
- TDS
- Temperature
- DO (Dissolve Oxygen)

2.2.3.3 Preservation

Preservation is important in order to minimize the changes in the sample. The collected water samples were preserved in appropriate containers as per APHA Guidelines, the method of which is given as under:

For COD, organics and nitrates sample is preserved below pH -2 by addition of sulphuric acid.

For metals sample is preserved below pH-2 by adding nitric acid. For BOD and inorganic sample is stored below 4 °C.

2.2.3.4 Sample Identification and Chain of Custody

The collected samples were labeled and assigned a unique sample identification number, sampling date and time of collection to collected samples. All the relevant information (sample location, time of collection, sample identification, temperature, pH, collected by, preservation techniques etc) was recorded immediately on the Chain of Custody form signed by SEAL field Analyst.

2.2.3.5 Transportation

A shipping container (Ice box with eutectic cold packs instead of ice) with maintained temperature of 4° C ±5 °C was used for transporting the sample from the collection site to the environmental laboratory.

2.2.3.6 Parameters

Parameters provided in the scope of work for the testing include following:

- **Groundwater**

Drinking water samples were collected from identified sampling points. The collected samples were given to laboratory for analysis of following parameters:
- pH (Measured at site)
- Temperature
- Color (Measured at site)
- Total Dissolved Solids (TDS) (Measured at site)
- Total Suspended Solids (TSS) (Measured at site)
- Taste and Odor (Measured at Site)
- Total Hardness
- Nitrate as NO₃
- Ammonia
- E-Coli

- Arsenic
- Turbidity
- Chlorides as Cl⁻
- Fluoride as F⁻
- Sulphate as SO₄²⁻
- Iron as Fe³⁺
- Sodium
- Iodine
- Zinc as Zn²⁺
- Total Coliform

Surface & Wastewater
Surface and wastewater samples were collected from identified sampling locations. Testing parameters for surface & Wastewater is given below:

- pH (Measured at site)
- Temperature (Measured at site)
- Biochemical Oxygen Demand (BOD5)
- Chemical Oxygen Demand (COD)
- TSS
- TDS (Measured at site)
- Grease & Oil
- Phenolic Compound as Phenols
- Chloride as CI
- Fluoride as F⁻
- Cyanide total as CN⁻
- An-Ionic Detergents as MBAs
- Sulphate as SO₄²⁻
- Sulphide as S⁻
- Ammonia
- Pesticides
- Phosphorous
- Potassium
- Dissolve Oxygen (DO)

- Cadmium
- Chromium trivalent and hexavalent
- Copper
- Lead
- Mercury
- Selenium
- Nickel
- Silver
- Total toxic metals
- Zinc
- Arsenic
- Barium
- Iron
- Manganese
- Boron
- Chlorine
- Nitrogen as Nutrient
- Turbidity

2.2.3.7Methods of Analysis
Methods used for the testing of above mentioned parameters are included as Table 2.3
Table 2-2: Water Testing Methods

<table>
<thead>
<tr>
<th>Sr.No.</th>
<th>Parameter</th>
<th>Method / Technique</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>TDS</td>
<td>Conductivity Method, TDS meter</td>
<td>APHA 2510 B</td>
</tr>
<tr>
<td>2.</td>
<td>pH</td>
<td>By pH meter</td>
<td>APHA-4500 H+ B</td>
</tr>
<tr>
<td>3.</td>
<td>TSS</td>
<td>Photometric</td>
<td>HACH Method 8165</td>
</tr>
<tr>
<td>4.</td>
<td>Temperature</td>
<td>Celsius thermometer</td>
<td>APHA-2550 B</td>
</tr>
<tr>
<td>5.</td>
<td>BOD5</td>
<td>Respirometric Method</td>
<td>HACH Method 10099</td>
</tr>
<tr>
<td>6.</td>
<td>COD</td>
<td>Dichromate Reactor Digestion</td>
<td>HACH Method 8000</td>
</tr>
<tr>
<td>7.</td>
<td>Taste and Odour</td>
<td>By Sensory</td>
<td>-</td>
</tr>
<tr>
<td>8.</td>
<td>Oil and Grease</td>
<td>Hexane Extractable Gravimetric Method</td>
<td>HACH Method 10056</td>
</tr>
<tr>
<td>9.</td>
<td>Phenolic Compounds as Phenols</td>
<td>4-Aminoantipyrine Method</td>
<td>HACH Method 8047</td>
</tr>
<tr>
<td>10.</td>
<td>Chloride Cl(^-)</td>
<td>Argentrometri Titration</td>
<td>APHA 4500 Cl(^-) B</td>
</tr>
<tr>
<td>11.</td>
<td>Fluoride F(^-)</td>
<td>SPANDS Method</td>
<td>HACH Method 8209</td>
</tr>
<tr>
<td>12.</td>
<td>Arsenic Ar</td>
<td>Silver Diethyldithiocarbamate Method</td>
<td>HACH Method 8103</td>
</tr>
<tr>
<td>13.</td>
<td>Sulphate SO(_2)(^-)</td>
<td>Sulpha Ver 4 Method</td>
<td>HACH Method 8051</td>
</tr>
<tr>
<td>14.</td>
<td>Sulfide S(^-)</td>
<td>Methylene Blue Method</td>
<td>HACH Method 8131</td>
</tr>
<tr>
<td>15.</td>
<td>Ammonia NH(_3)</td>
<td>Salicylate Method</td>
<td>HACH Method 8155</td>
</tr>
<tr>
<td>16.</td>
<td>Pesticides</td>
<td>Micro Extraction and Gas Chromatography</td>
<td>ASTM-D5175</td>
</tr>
<tr>
<td>17.</td>
<td>Total Hardness</td>
<td>EDTA Titration</td>
<td>APHA-2340 C</td>
</tr>
<tr>
<td>18.</td>
<td>Nitrate NO(_3)</td>
<td>Cadmium Reduction Method</td>
<td>APHA-4500-NO(_3) B</td>
</tr>
<tr>
<td>19.</td>
<td>Turbidity</td>
<td>Nephlometric Method</td>
<td>HACH Method 8219</td>
</tr>
<tr>
<td>20.</td>
<td>Iron as Fe(^{3+})</td>
<td>Ferrozine Method</td>
<td>HACH Method 8147</td>
</tr>
<tr>
<td>21.</td>
<td>Sodium Na(^+)</td>
<td>Flame Emission Photometric</td>
<td>APHA-3500-Na-B</td>
</tr>
<tr>
<td>22.</td>
<td>Zinc as Zn (^{2+})</td>
<td>Zincon Method</td>
<td>HACH Method 8009</td>
</tr>
<tr>
<td>23.</td>
<td>Cyanide as CN(^-)</td>
<td>Pyridine-Pyrazalone Method</td>
<td>HACH Method 8027</td>
</tr>
<tr>
<td>24.</td>
<td>An Ionic detergent as MBAs</td>
<td>Methylene Blue Active Substance (MBAS) method</td>
<td>APHA 5540 C</td>
</tr>
<tr>
<td>25.</td>
<td>Total Coli forms</td>
<td>Microbiology</td>
<td>APHA - 9222 B</td>
</tr>
<tr>
<td>26.</td>
<td>Faecal Coli forms (E.Coli)</td>
<td>Microbiology</td>
<td>APHA - 9222 D</td>
</tr>
<tr>
<td>27.</td>
<td>Cadmium Cd</td>
<td>Dithizone Method</td>
<td>HACH Method 8107</td>
</tr>
<tr>
<td>28.</td>
<td>Chromium Trivalent and Hexavalent</td>
<td>1,5 Diphenylcarbohydrazide Method</td>
<td>HACH Method 8023</td>
</tr>
<tr>
<td>29.</td>
<td>Copper Cu(^{2+})</td>
<td>Porphyrin Method</td>
<td>HACH Method 8143</td>
</tr>
<tr>
<td>30.</td>
<td>Lead Pb(^{2+})</td>
<td>Dithizone Method</td>
<td>HACH Method 8033</td>
</tr>
<tr>
<td>31.</td>
<td>Mercury Hg</td>
<td>Mercury Extraction Method</td>
<td>HACH Method 10066</td>
</tr>
<tr>
<td>32.</td>
<td>Selenium Se</td>
<td>Diaminobenzidine Method</td>
<td>HACH Method 8194</td>
</tr>
<tr>
<td>33.</td>
<td>Nickle Ni</td>
<td>1-(2 Pyridilazo)-2-Nepthol PAN Method</td>
<td>HACH Method 8150</td>
</tr>
<tr>
<td>34.</td>
<td>Silver Ag</td>
<td>Colorimetric Method</td>
<td>HACH Method 8120</td>
</tr>
<tr>
<td>Sr.No.</td>
<td>Parameter</td>
<td>Method / Technique</td>
<td>Reference</td>
</tr>
<tr>
<td>--------</td>
<td>---------------</td>
<td>--------------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>35.</td>
<td>Boron B</td>
<td>Carmine Method</td>
<td>HACH Method 8015</td>
</tr>
<tr>
<td>36.</td>
<td>Manganese Mn</td>
<td>PAN Method</td>
<td>HACH Method 8149</td>
</tr>
<tr>
<td>37.</td>
<td>Barium Ba</td>
<td>Turbidimetric Method</td>
<td>HACH Method 8014</td>
</tr>
<tr>
<td>38.</td>
<td>Phosphorous</td>
<td>Membrane Filter Method</td>
<td>APHA 4500 P</td>
</tr>
<tr>
<td>39.</td>
<td>Pottasium</td>
<td>Flame Emission Photometric</td>
<td>APHA 2340 B</td>
</tr>
<tr>
<td>40.</td>
<td>Dissolve Oxygen (DO)</td>
<td>Electrometric Method</td>
<td>APHA 4500-OA</td>
</tr>
</tbody>
</table>

Note: APHA=American Public Health Association, ASTM = American Society for Testing and Materials
CHAPTER – III

RESULTS AND DISCUSSION
3. Results and Discussion

This section of the report presents the testing results of Ambient Air (CO, NO\textsubscript{x}, SO\textsubscript{2}, PM\textsubscript{10}, PM\textsubscript{2.5}) Ambient Noise, Groundwater, Surface water and Wastewater monitoring and analysis. Ambient air monitoring were carried out at 16 different locations, Noise Level were monitored at 16 different locations whereas, Surface water sampling was carried out at 07 different locations, wastewater sampling was carried out 04 locations and ground water sampling was carried out at 16 different locations.

3.1 Ambient Air Quality

Concentration of CO, NO\textsubscript{x}, SO\textsubscript{2}, PM\textsubscript{10} and PM\textsubscript{2.5} were measured at 16 sampling locations in the project area to get an overview of the air quality. The results of measure concentration at each sampling location are given in Tables below.

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Coordinates</th>
<th>Location</th>
<th>Humidity</th>
<th>Wind speed</th>
<th>Temp</th>
<th>CO</th>
<th>NO\textsubscript{x}</th>
<th>NO\textsubscript{2}</th>
<th>NO</th>
<th>NO\textsubscript{x}</th>
<th>SO\textsubscript{2}</th>
<th>PM\textsubscript{10}</th>
<th>PM\textsubscript{2.5}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Lahore</td>
<td>%</td>
<td>m/sec</td>
<td>°C</td>
<td>mg/m3</td>
<td>µg/m3</td>
<td>µg/m3</td>
<td>µg/m3</td>
<td>µg/m3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA 04</td>
<td>74°27'17.565"E 31°27'16.187"N</td>
<td>Ferozpur Road near Chungi</td>
<td>42.1</td>
<td>2.8</td>
<td>8.1</td>
<td>5.6</td>
<td>23.7</td>
<td>4.4</td>
<td>28.1</td>
<td>33.3</td>
<td>161</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>AA 05</td>
<td>74°14'18.139"E 31°20'36.142"N</td>
<td>Raiwind Road Near Lake City</td>
<td>40.1</td>
<td>2.9</td>
<td>9.2</td>
<td>5.1</td>
<td>22.2</td>
<td>4.3</td>
<td>26.5</td>
<td>32.1</td>
<td>240</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>AA 14</td>
<td>74°12'27.765"E 31°15'21.141"N</td>
<td>Sundar Road Raiwind</td>
<td>42.3</td>
<td>2.7</td>
<td>8.6</td>
<td>1.4</td>
<td>15.7</td>
<td>2.4</td>
<td>18.1</td>
<td>15.3</td>
<td>85</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>AA 16</td>
<td>74°29'38.886"E 31°12'1.937"N</td>
<td>Baddian Road near Hera Village</td>
<td>42.1</td>
<td>2.6</td>
<td>8.4</td>
<td>3.7</td>
<td>28.6</td>
<td>4.6</td>
<td>33.2</td>
<td>37.3</td>
<td>215</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Area No.</td>
<td>N 73°52'49.234''E 3°15'38.321''</td>
<td>Sargodha Road near Farooqabad</td>
<td>44.7</td>
<td>2.5</td>
<td>8.2</td>
<td>1.1</td>
<td>14.6</td>
<td>1.8</td>
<td>16.4</td>
<td>18.5</td>
<td>78</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>----</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>AA 03</td>
<td></td>
<td>Nai Abbadi Near Multan Road</td>
<td></td>
</tr>
<tr>
<td>AA 08</td>
<td></td>
<td>Raiwind Near Kasur Road</td>
<td>46.7</td>
<td>3.1</td>
<td>9.3</td>
<td>5.3</td>
<td>24.6</td>
<td>4.4</td>
<td>28.9</td>
<td>35.1</td>
<td>187</td>
<td>33</td>
<td></td>
</tr>
</tbody>
</table>

Kasur
The results show that the ambient air quality on all the measured location is within NEQS except Particulate Matter which is higher on road sides. The CO is also litter bit higher on road sides in comparison with clean ambient air for which CO level should be less than 2.0 ppm.
3.2 Noise

The noise levels were determined at the identified locations. Results vary in noise levels from 45.1 to 80.4 dBA. Wind speed was also measured on same locations. The results of the noise measurement are presented below.

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Locations</th>
<th>Coordinates</th>
<th>Wind Speed m/s</th>
<th>Average Noise Level d BA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lahore</td>
<td>NL 7</td>
<td>Chungi Near Ferozpur Road</td>
<td>74°21'16.732''E 31°26'40.635''N</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td>NL 8</td>
<td>Raiwind Road near orai umra</td>
<td>74°14'9.046''E 31°21'26.637''N</td>
<td>3.1</td>
</tr>
<tr>
<td></td>
<td>NL 14</td>
<td>Manga Road Raiwind</td>
<td>74°12'7.203''E 31°14'51.251''N</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td>NL 16</td>
<td>Baddian Road Near BRB Canal</td>
<td>74°29'55.391''E 31°23'13.349''N</td>
<td>2.6</td>
</tr>
<tr>
<td>Kasur</td>
<td>NL 5</td>
<td>Nai Abbadi Near Multan Road</td>
<td>73°53'27.261''E 31°5'27.884''N</td>
<td>2.9</td>
</tr>
<tr>
<td></td>
<td>NL 6</td>
<td>Raiwind Kasur Road</td>
<td>74°22'36.324''E 31°10'7.090''N</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>NL 11</td>
<td>Chunniy</td>
<td>73°59'24.557''E 30°57'27.797''N</td>
<td>2.6</td>
</tr>
<tr>
<td></td>
<td>NL 15</td>
<td>Multan Road near Dinnanat</td>
<td>74°0'34.330''E 31°14'56.880''N</td>
<td>2.6</td>
</tr>
<tr>
<td>Sheikhupura</td>
<td>NL 1</td>
<td>Sargodha Road near Jhang</td>
<td>73°52'9.705''E 31°44'22.543''N</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td>NL 2</td>
<td>Khanka Dogra</td>
<td>73°38'0.526''E 31°49'13.857''N</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td>NL 9</td>
<td>GT Road Near Rakka</td>
<td>74°15'5.308''E 31°49'16.505''N</td>
<td>2.6</td>
</tr>
<tr>
<td></td>
<td>NL 10</td>
<td>Jarranwala Road near Burj Attari</td>
<td>74°11'53.880''E 31°34'25.571''N</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td>NL 12</td>
<td>Sheikhupura Road near Tiba Rehmat Khan</td>
<td>74°8'12.712''E 31°39'43.921''N</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>NL 13</td>
<td>Faisalabad Road near Marawal</td>
<td>73°45'21.690''E 31°35'2.087''N</td>
<td>2.8</td>
</tr>
<tr>
<td>Nankana Sab</td>
<td>NL 3</td>
<td>Village Kullanwala</td>
<td>73°30'58.949''E 31°32'42.466''N</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>NL 4</td>
<td>Near QB Canal</td>
<td>73°57'38.482''E 31°24'28.518''N</td>
<td>2.8</td>
</tr>
<tr>
<td>NEQS</td>
<td></td>
<td></td>
<td></td>
<td>65 dB A</td>
</tr>
</tbody>
</table>

The result shows that the measured noise levels on are higher than NEQS on road sides.
3.3 Water Sampling

Surface, waste and Groundwater samples were collected from identified locations on study area. The result and discussion is given in following sections:

3.3.1 Groundwater

Thirteen Groundwater samples were taken from different district locations that fall within the master plan. 20 Parameters were analyzed; the results are presented in below Tables.

Table 3-3: Groundwater Sampling at Different Locations (Lahore)

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Parameter</th>
<th>Unit</th>
<th>WHO Standards</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Near Village Alha</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Near Lake City</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sundar Road near Raiwind</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Near Pak Arab,Ferozpur Road</td>
</tr>
<tr>
<td>1</td>
<td>pH</td>
<td></td>
<td>6.5-8.5</td>
<td>7.4</td>
</tr>
<tr>
<td>2</td>
<td>Temperature</td>
<td>°C</td>
<td>-</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>Color</td>
<td>TCU</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>Total Dissolved Solids (TDS)</td>
<td>mg/l</td>
<td>1000</td>
<td>1080</td>
</tr>
<tr>
<td>5</td>
<td>Total Suspended Solids (TSS)</td>
<td>mg/l</td>
<td>-</td>
<td>05</td>
</tr>
<tr>
<td>6</td>
<td>Total Hardness as CaCO₃</td>
<td>mg/l</td>
<td>500</td>
<td>501</td>
</tr>
<tr>
<td>7</td>
<td>Taste and Odor</td>
<td>Obj-Unobj</td>
<td>-</td>
<td>obj</td>
</tr>
<tr>
<td>8</td>
<td>Nitrate (as NO₃⁻)</td>
<td>mg/l</td>
<td>50</td>
<td>31</td>
</tr>
<tr>
<td>9</td>
<td>Ammonia (NH₃)</td>
<td>mg/l</td>
<td>1.5</td>
<td>BDL</td>
</tr>
<tr>
<td>10</td>
<td>Arsenic (As)</td>
<td>mg/l</td>
<td>0.010</td>
<td>0.05</td>
</tr>
<tr>
<td>11</td>
<td>Turbidity</td>
<td>NTU</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>Chloride (as Cl⁻)</td>
<td>mg/l</td>
<td>250</td>
<td>288</td>
</tr>
<tr>
<td>13</td>
<td>Fluoride (as F⁻)</td>
<td>mg/l</td>
<td>1.50</td>
<td>0.06</td>
</tr>
<tr>
<td>14</td>
<td>Sulphate (as SO₄²⁻)</td>
<td>mg/l</td>
<td>250</td>
<td>208</td>
</tr>
<tr>
<td>15</td>
<td>Iron (as Fe²⁺)</td>
<td>mg/l</td>
<td>0.3</td>
<td>0.02</td>
</tr>
<tr>
<td>16</td>
<td>Sodium</td>
<td>mg/l</td>
<td>200</td>
<td>310</td>
</tr>
<tr>
<td>17</td>
<td>Iodine</td>
<td>mg/l</td>
<td>-</td>
<td>BDL</td>
</tr>
</tbody>
</table>
The results shows that the samples taken from Lahore is contaminated with heavy metal, high in TDS, hardness and is biologically contaminated

Table 3-6: Groundwater Sampling at Different Locations (Shiekhupura)

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Parameter</th>
<th>Unit</th>
<th>WHO Standards</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>GW-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Near QB Link Canal</td>
</tr>
<tr>
<td>1</td>
<td>pH</td>
<td>-</td>
<td>6.5-8.5</td>
<td>7.2</td>
</tr>
<tr>
<td>2</td>
<td>Temperature</td>
<td>°C</td>
<td>-</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>Color</td>
<td>TCU</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>Total Dissolved Solids (TDS)</td>
<td>mg/l</td>
<td>1000</td>
<td>607</td>
</tr>
<tr>
<td>5</td>
<td>Total Suspended Solids (TSS)</td>
<td>mg/l</td>
<td>-</td>
<td>02</td>
</tr>
<tr>
<td>6</td>
<td>Total Hardness as CaCO₃</td>
<td>mg/l</td>
<td>500</td>
<td>240</td>
</tr>
<tr>
<td>7</td>
<td>Taste and Odor</td>
<td></td>
<td>Obj-Unobj</td>
<td>Obj-Unobj</td>
</tr>
<tr>
<td>8</td>
<td>Nitrate (as NO₃)</td>
<td>mg/l</td>
<td>50</td>
<td>26</td>
</tr>
<tr>
<td>9</td>
<td>Ammonia (NH₃)</td>
<td>mg/l</td>
<td>1.5</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>Arsenic (As)</td>
<td>mg/l</td>
<td>0.010</td>
<td>0.002</td>
</tr>
<tr>
<td>11</td>
<td>Turbidity</td>
<td>NTU</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>Chloride (as Cl⁻)</td>
<td>mg/l</td>
<td>250</td>
<td>112</td>
</tr>
<tr>
<td>13</td>
<td>Fluoride (as F⁻)</td>
<td>mg/l</td>
<td>1.50</td>
<td>0.44</td>
</tr>
</tbody>
</table>
The results show that the sample taken from district Shiekhupura has no contamination in form of biological, chemical and toxic. The water can be used for drinking purposes.

Table 3-7: Groundwater Sampling at Different Locations (Kasur)

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Parameter</th>
<th>Unit</th>
<th>WHO Standards</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Near Railway Station</td>
</tr>
<tr>
<td>1</td>
<td>pH</td>
<td></td>
<td>6.5-8.5</td>
<td>74°26'39.206''E 31d24'1.793''N</td>
</tr>
<tr>
<td>2</td>
<td>Temperature</td>
<td>°C</td>
<td>18 20 19 20</td>
<td>7.2 7.4 7.1 7.7</td>
</tr>
<tr>
<td>3</td>
<td>Color</td>
<td>TCU</td>
<td>15 0 0 0</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>4</td>
<td>Total Dissolved Solids (TDS)</td>
<td>mg/l</td>
<td>1000 2506 1809 3017</td>
<td>1509</td>
</tr>
<tr>
<td>5</td>
<td>Total Suspended Solids (TSS)</td>
<td>mg/l</td>
<td>- 25 18 24</td>
<td>13</td>
</tr>
<tr>
<td>6</td>
<td>Total Hardness as CaCO₃</td>
<td>mg/l</td>
<td>- 1001 899 1617</td>
<td>766</td>
</tr>
<tr>
<td>7</td>
<td>Taste and Odor</td>
<td></td>
<td>Obj-Unobj</td>
<td>Obj</td>
</tr>
<tr>
<td>8</td>
<td>Nitrate (as NO₃⁻)</td>
<td>mg/l</td>
<td>50 78 60 85</td>
<td>55</td>
</tr>
<tr>
<td>9</td>
<td>Ammonia (NH₃)</td>
<td>mg/l</td>
<td>1.5 0 0 0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>Arsenic (As)</td>
<td>mg/l</td>
<td>0.010 0.56 0.12 1.1</td>
<td>0.10</td>
</tr>
<tr>
<td>11</td>
<td>Turbidity</td>
<td>NTU</td>
<td>5 0 0 0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>Chloride (as Cl⁻)</td>
<td>mg/l</td>
<td>250 455 388 544</td>
<td>337</td>
</tr>
<tr>
<td>13</td>
<td>Fluoride (as F⁻)</td>
<td>mg/l</td>
<td>1.5 3.1 2.5 3.4</td>
<td>1.9</td>
</tr>
<tr>
<td>14</td>
<td>Sulphate (as SO₄²⁻)</td>
<td>mg/l</td>
<td>250 488 407 506</td>
<td>377</td>
</tr>
<tr>
<td>15</td>
<td>Iron (as Fe²⁺)</td>
<td>mg/l</td>
<td>0.3 0.24 0.10 0.31</td>
<td>0.04</td>
</tr>
<tr>
<td>16</td>
<td>Sodium</td>
<td>mg/l</td>
<td>200 667 603 704</td>
<td>302</td>
</tr>
</tbody>
</table>
The results show that the sample taken from Kasur City is contaminated with heavy metal, high in TDS, hardness and biological contaminated.

Table 3-8: Groundwater Sampling at Different Locations (Nankana Sab)

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Parameter</th>
<th>Unit</th>
<th>WHO Standards</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>6.5-8.5</td>
<td>Near Shahkot North</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7.2</td>
<td>Jarranwala Road near QB Canal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7.4</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>pH</td>
<td>-</td>
<td>6.5-8.5</td>
<td>7.2</td>
</tr>
<tr>
<td>2</td>
<td>Temperature</td>
<td>°C</td>
<td>7.4</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>Color</td>
<td>TCU</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>Total Dissolved Solids</td>
<td>mg/l</td>
<td>1000</td>
<td>607</td>
</tr>
<tr>
<td></td>
<td>(TDS)</td>
<td></td>
<td>455</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Total Suspended Solids</td>
<td>mg/l</td>
<td>01</td>
<td>202</td>
</tr>
<tr>
<td></td>
<td>(TSS)</td>
<td></td>
<td>02</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Total Hardness as CaCO₃</td>
<td>mg/l</td>
<td>188</td>
<td>302</td>
</tr>
<tr>
<td>7</td>
<td>Taste and Odor</td>
<td>-</td>
<td>Obj-Unobj</td>
<td>Unobj</td>
</tr>
</tbody>
</table>
The results show that the sample taken from Dist. Nankana Sab is fit for drinking purposes.

3.3.2 Surface Water Sampling (Canals)

Surface water sample was collected from canals at identified sampling locations. 37 Parameters were analyzed for these samples; results have been shown in Tables below.

Table 3-4: Surfacewater and Wastewater Sampling at Various Location

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Parameter</th>
<th>Unit</th>
<th>NEQS ***</th>
<th>Locations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SW-05</td>
</tr>
<tr>
<td>1</td>
<td>pH</td>
<td>-</td>
<td>6-10</td>
<td>Banbarwali</td>
</tr>
<tr>
<td>2</td>
<td>Temperature</td>
<td>°C</td>
<td>40</td>
<td>24</td>
</tr>
<tr>
<td>3</td>
<td>Biochemical Oxygen Demand (BOD5)</td>
<td>TCU</td>
<td>80</td>
<td>06</td>
</tr>
<tr>
<td>4</td>
<td>Chemical</td>
<td>mg/l</td>
<td>150</td>
<td>08</td>
</tr>
</tbody>
</table>

Results and Discussion

3.3.2 Surface Water Sampling (Canals)

Surface water sample was collected from canals at identified sampling locations. 37 Parameters were analyzed for these samples; results have been shown in Tables below.

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Parameter</th>
<th>Unit</th>
<th>NEQS ***</th>
<th>Locations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SW-05</td>
</tr>
<tr>
<td>1</td>
<td>pH</td>
<td>-</td>
<td>6-10</td>
<td>Banbarwali</td>
</tr>
<tr>
<td>2</td>
<td>Temperature</td>
<td>°C</td>
<td>40</td>
<td>24</td>
</tr>
<tr>
<td>3</td>
<td>Biochemical Oxygen Demand (BOD5)</td>
<td>TCU</td>
<td>80</td>
<td>06</td>
</tr>
<tr>
<td>4</td>
<td>Chemical</td>
<td>mg/l</td>
<td>150</td>
<td>08</td>
</tr>
</tbody>
</table>
Results and Discussion

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Parameter</th>
<th>Unit</th>
<th>NEQS</th>
<th>Locations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>**</td>
<td>Banbarwali Ravri Bedian Canal (BRB) Lahore</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>**</td>
<td>Upper Chenab Canal Sheikhpura</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>**</td>
<td>Qadirabad Ball Canal Sheikhpura</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>**</td>
<td>Lahore Brach Canal Lahore</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>**</td>
<td>Butcher Khana Distributary Lahore</td>
</tr>
<tr>
<td>5</td>
<td>TSS</td>
<td>mg/l</td>
<td>150</td>
<td>130</td>
</tr>
<tr>
<td>6</td>
<td>TDS</td>
<td>mg/l</td>
<td>3500</td>
<td>128</td>
</tr>
<tr>
<td>7</td>
<td>Grease & Oil</td>
<td>-</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>Phenolic Compound as Phenols</td>
<td>mg/l</td>
<td>0.1</td>
<td>BDL</td>
</tr>
<tr>
<td>9</td>
<td>Chloride (as Cl⁻)</td>
<td>mg/l</td>
<td>1000</td>
<td>22</td>
</tr>
<tr>
<td>10</td>
<td>Fluoride (as F⁻)</td>
<td>mg/l</td>
<td>20</td>
<td>0.3</td>
</tr>
<tr>
<td>11</td>
<td>Cyanide total (as CN⁻)</td>
<td>NTU</td>
<td>2</td>
<td>BDL</td>
</tr>
<tr>
<td>12</td>
<td>An-ionic Detergents as MBAs</td>
<td>mg/l</td>
<td>20</td>
<td>BDL</td>
</tr>
<tr>
<td>13</td>
<td>Sulphate (as SO₄²⁻)</td>
<td>mg/l</td>
<td>600</td>
<td>26</td>
</tr>
<tr>
<td>14</td>
<td>Sulphide (as S⁻)</td>
<td>mg/l</td>
<td>1.0</td>
<td>BDL</td>
</tr>
<tr>
<td>15</td>
<td>Ammonia (NH₃)</td>
<td>mg/l</td>
<td>40</td>
<td>01</td>
</tr>
<tr>
<td>16</td>
<td>Pesticides</td>
<td>mg/l</td>
<td>0.15</td>
<td>BDL</td>
</tr>
<tr>
<td>17</td>
<td>Cadmium</td>
<td>mg/l</td>
<td>0.1</td>
<td>BDL</td>
</tr>
<tr>
<td>18</td>
<td>Chromium as (trivalent and hexavalent)</td>
<td>mg/l</td>
<td>1.0</td>
<td>BDL</td>
</tr>
<tr>
<td>19</td>
<td>Copper</td>
<td>Num ber</td>
<td>1.0</td>
<td>0.04</td>
</tr>
<tr>
<td>20</td>
<td>Lead</td>
<td>Num ber</td>
<td>0.5</td>
<td>0.01</td>
</tr>
<tr>
<td>21</td>
<td>Mercury</td>
<td>mg/l</td>
<td>0.01</td>
<td>BDL</td>
</tr>
<tr>
<td>22</td>
<td>Selenium</td>
<td>mg/l</td>
<td>0.5</td>
<td>BDL</td>
</tr>
<tr>
<td>23</td>
<td>Nickel</td>
<td>mg/l</td>
<td>1.0</td>
<td>BDL</td>
</tr>
<tr>
<td>24</td>
<td>Sliver</td>
<td>mg/l</td>
<td>1.0</td>
<td>BDL</td>
</tr>
</tbody>
</table>
Results and Discussion

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Parameter</th>
<th>Unit</th>
<th>NEQS **</th>
<th>Locations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SW-05</td>
</tr>
<tr>
<td>25</td>
<td>Total toxic metals</td>
<td>mg/l</td>
<td>2.0</td>
<td>0.06</td>
</tr>
<tr>
<td>26</td>
<td>Zinc</td>
<td>mg/l</td>
<td>5.0</td>
<td>0.21</td>
</tr>
<tr>
<td>27</td>
<td>Arsenic</td>
<td>mg/l</td>
<td>1.0</td>
<td>0.001</td>
</tr>
<tr>
<td>28</td>
<td>Barium</td>
<td>mg/l</td>
<td>1.5</td>
<td>BDL</td>
</tr>
<tr>
<td>29</td>
<td>Iron</td>
<td>mg/l</td>
<td>2.0</td>
<td>0.22</td>
</tr>
<tr>
<td>30</td>
<td>Manganese</td>
<td>mg/l</td>
<td>1.5</td>
<td>BDL</td>
</tr>
<tr>
<td>31</td>
<td>Boron</td>
<td>mg/l</td>
<td>6.0</td>
<td>BDL</td>
</tr>
<tr>
<td>32</td>
<td>Chlorine</td>
<td>mg/l</td>
<td>1.0</td>
<td>BDL</td>
</tr>
<tr>
<td>33</td>
<td>Turbidity</td>
<td>NTU</td>
<td>-</td>
<td>120</td>
</tr>
<tr>
<td>34</td>
<td>Total Nitrogen</td>
<td>mg/l</td>
<td>-</td>
<td>1.2</td>
</tr>
<tr>
<td>35</td>
<td>Phosphorous</td>
<td>mg/l</td>
<td>-</td>
<td>0.66</td>
</tr>
<tr>
<td>36</td>
<td>Potassium</td>
<td>mg/l</td>
<td>-</td>
<td>1.2</td>
</tr>
<tr>
<td>37</td>
<td>Dissolve Oxygen</td>
<td>mg/l</td>
<td>-</td>
<td>0.6</td>
</tr>
</tbody>
</table>

All the surface water (canal) samples are found in compliance with NEQS.

Table 3-5: Wastewater Sampling from Drains

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Parameter</th>
<th>Unit</th>
<th>NEQS **</th>
<th>Waste Water</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>WW-01</td>
</tr>
<tr>
<td>1</td>
<td>pH</td>
<td>-</td>
<td>6-10</td>
<td>8.29</td>
</tr>
</tbody>
</table>

3 Results and Discussion
3-11
Results and Discussion

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Parameter</th>
<th>Unit</th>
<th>NEQS*</th>
<th>Waste Water</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>WW-01</td>
</tr>
<tr>
<td>2</td>
<td>Temperature</td>
<td>°C</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>Biochemical Oxygen Demand (BOD₅)</td>
<td>TCU</td>
<td>80</td>
<td>180</td>
</tr>
<tr>
<td>4</td>
<td>Chemical Oxygen Demand (COD)</td>
<td>mg/l</td>
<td>150</td>
<td>344</td>
</tr>
<tr>
<td>5</td>
<td>TSS</td>
<td>mg/l</td>
<td>150</td>
<td>144</td>
</tr>
<tr>
<td>6</td>
<td>TDS</td>
<td>mg/l</td>
<td>3500</td>
<td>1506</td>
</tr>
<tr>
<td>7</td>
<td>Grease & Oil</td>
<td></td>
<td>10</td>
<td>04</td>
</tr>
<tr>
<td>8</td>
<td>Phenolic Compound as Phenols</td>
<td>mg/l</td>
<td>0.1</td>
<td>BDL</td>
</tr>
<tr>
<td>9</td>
<td>Chloride (as Cl⁻)</td>
<td>mg/l</td>
<td>1000</td>
<td>244</td>
</tr>
<tr>
<td>10</td>
<td>Fluoride (as F⁻)</td>
<td>mg/l</td>
<td>20</td>
<td>1.1</td>
</tr>
<tr>
<td>11</td>
<td>Cyanide total (as CN⁻)</td>
<td>NTU</td>
<td>2</td>
<td>0.04</td>
</tr>
<tr>
<td>12</td>
<td>An-Ionic Detergents as MBAs</td>
<td>mg/l</td>
<td>20</td>
<td>09</td>
</tr>
<tr>
<td>13</td>
<td>Sulphate (as SO₄²⁻)</td>
<td>mg/l</td>
<td>600</td>
<td>340</td>
</tr>
<tr>
<td>14</td>
<td>Sulphide (as S⁻)</td>
<td>mg/l</td>
<td>1.0</td>
<td>BDL</td>
</tr>
<tr>
<td>15</td>
<td>Ammonia (NH₃)</td>
<td>mg/l</td>
<td>40</td>
<td>34</td>
</tr>
<tr>
<td>16</td>
<td>Pesticides</td>
<td>mg/l</td>
<td>0.15</td>
<td>0.10</td>
</tr>
<tr>
<td>17</td>
<td>Cadmium</td>
<td>mg/l</td>
<td>0.1</td>
<td>BDL</td>
</tr>
</tbody>
</table>

NEQS = National Environmental Quality Standards

Note: BDL = Below Detectable Limit
Results and Discussion

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Parameter</th>
<th>Unit</th>
<th>NEQS* **</th>
<th>WW-01</th>
<th>WW-02</th>
<th>WW-03</th>
<th>WW-04</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Waste Water</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Location: 74°17′3.612″E, 31°38′1.241″N (Nala Daig, Sheikhupura)</td>
<td>72°24′31.867″E, 31°9′8.044″N (Drain near Khara), Kasur</td>
<td>74°16′6.047″E, 31°22′55.310″N (Hyderia Drain near Khayban e Ameen), Lahore</td>
<td>73°40′56.476″E, 31°26′17.761″N (Village Shingi Kot, Nankana Sab)</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Chromium as (trivalent and hexavalent)</td>
<td>mg/l</td>
<td>1.0</td>
<td>1.4</td>
<td>0.05</td>
<td>1.6</td>
<td>BDL</td>
</tr>
<tr>
<td>19</td>
<td>Copper</td>
<td>Number</td>
<td>1.0</td>
<td>1.1</td>
<td>0.01</td>
<td>1.4</td>
<td>0.01</td>
</tr>
<tr>
<td>20</td>
<td>Lead</td>
<td>Number</td>
<td>0.5</td>
<td>0.6</td>
<td>BDL</td>
<td>0.9</td>
<td>BDL</td>
</tr>
<tr>
<td>21</td>
<td>Mercury</td>
<td>mg/l</td>
<td>0.01</td>
<td>BDL</td>
<td>BDL</td>
<td>BDL</td>
<td>BDL</td>
</tr>
<tr>
<td>22</td>
<td>Selenium</td>
<td>mg/l</td>
<td>0.5</td>
<td>BDL</td>
<td>BDL</td>
<td>BDL</td>
<td>BDL</td>
</tr>
<tr>
<td>23</td>
<td>Nickel</td>
<td>mg/l</td>
<td>1.0</td>
<td>0.21</td>
<td>BDL</td>
<td>0.12</td>
<td>BDL</td>
</tr>
<tr>
<td>24</td>
<td>Silver</td>
<td>mg/l</td>
<td>1.0</td>
<td>BDL</td>
<td>BDL</td>
<td>BDL</td>
<td>BDL</td>
</tr>
<tr>
<td>25</td>
<td>Total toxic metals</td>
<td>mg/l</td>
<td>2.0</td>
<td>4.75</td>
<td>0.07</td>
<td>5.52</td>
<td>0.01</td>
</tr>
<tr>
<td>26</td>
<td>Zinc</td>
<td>mg/l</td>
<td>5.0</td>
<td>2.1</td>
<td>1.1</td>
<td>2.4</td>
<td>0.6</td>
</tr>
<tr>
<td>27</td>
<td>Arsenic</td>
<td>mg/l</td>
<td>1.0</td>
<td>1.4</td>
<td>0.01</td>
<td>1.5</td>
<td>BDL</td>
</tr>
<tr>
<td>28</td>
<td>Barium</td>
<td>mg/l</td>
<td>1.5</td>
<td>BDL</td>
<td>BDL</td>
<td>BDL</td>
<td>BDL</td>
</tr>
<tr>
<td>29</td>
<td>Iron</td>
<td>mg/l</td>
<td>2.0</td>
<td>0.02</td>
<td>0.04</td>
<td>0.13</td>
<td>0.01</td>
</tr>
<tr>
<td>30</td>
<td>Manganese</td>
<td>mg/l</td>
<td>1.5</td>
<td>BDL</td>
<td>BDL</td>
<td>BDL</td>
<td>BDL</td>
</tr>
<tr>
<td>31</td>
<td>Boron</td>
<td>mg/l</td>
<td>1.5</td>
<td>BDL</td>
<td>BDL</td>
<td>BDL</td>
<td>BDL</td>
</tr>
<tr>
<td>32</td>
<td>Chlorine</td>
<td>mg/l</td>
<td>1.0</td>
<td>BDL</td>
<td>BDL</td>
<td>0.23</td>
<td>BDL</td>
</tr>
<tr>
<td>33</td>
<td>Turbidity</td>
<td>NTU</td>
<td>-</td>
<td>76</td>
<td>54</td>
<td>88</td>
<td>34</td>
</tr>
<tr>
<td>34</td>
<td>Total Nitrogen</td>
<td>mg/l</td>
<td>-</td>
<td>42</td>
<td>24</td>
<td>48</td>
<td>28</td>
</tr>
<tr>
<td>35</td>
<td>Phosphorous</td>
<td>mg/l</td>
<td>-</td>
<td>3.1</td>
<td>2.2</td>
<td>3.9</td>
<td>1.8</td>
</tr>
<tr>
<td>36</td>
<td>Potassium</td>
<td>mg/l</td>
<td>-</td>
<td>1.5</td>
<td>1.1</td>
<td>2.1</td>
<td>1.1</td>
</tr>
<tr>
<td>37</td>
<td>Dissolve Oxygen DO</td>
<td>mg/l</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
The waste water sample of hyderia drain and Deg Nullah found high in pollution load with contamination of heavy metals.

Table 3-6: Surfacewater Sampling at Various Location (Rivers)

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Parameter</th>
<th>Unit</th>
<th>NEQS* **</th>
<th>Locations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Down Stream of River Ravi Lahore</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Upper Stream of Ravi River</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>River Sutlej, near Baddian Kasur</td>
</tr>
<tr>
<td>1</td>
<td>pH</td>
<td>-</td>
<td>6-10</td>
<td>7.86</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.71</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.44</td>
</tr>
<tr>
<td>2</td>
<td>Temperature</td>
<td>°C</td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>Biochemical Oxygen Demand (BOD₅)</td>
<td>TCU</td>
<td>80</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>08</td>
</tr>
<tr>
<td>4</td>
<td>Chemical Oxygen Demand (COD)</td>
<td>mg/l</td>
<td>150</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>TSS</td>
<td>mg/l</td>
<td>150</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>144</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>122</td>
</tr>
<tr>
<td>6</td>
<td>TDS</td>
<td>mg/l</td>
<td>3500</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>168</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>196</td>
</tr>
<tr>
<td>7</td>
<td>Grease & Oil</td>
<td>-</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>Phenolic Compound as Phenols</td>
<td>mg/l</td>
<td>0.1</td>
<td>BDL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BDL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BDL</td>
</tr>
<tr>
<td>9</td>
<td>Chloride (as Cl⁻)</td>
<td>mg/l</td>
<td>1000</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>31</td>
</tr>
<tr>
<td>10</td>
<td>Fluoride (as F⁻)</td>
<td>mg/l</td>
<td>20</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.04</td>
</tr>
<tr>
<td>11</td>
<td>Cyanide total (as CN⁻)</td>
<td>NTU</td>
<td>2</td>
<td>BDL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BDL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BDL</td>
</tr>
<tr>
<td>12</td>
<td>An-Ionic Detergents as MBAs</td>
<td>mg/l</td>
<td>20</td>
<td>05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>02</td>
</tr>
<tr>
<td>13</td>
<td>Sulphate (as SO₄²⁻)</td>
<td>mg/l</td>
<td>600</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>28</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>14</td>
<td>Sulphide (as S⁻)</td>
<td>mg/l</td>
<td>1.0</td>
<td>BDL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BDL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BDL</td>
</tr>
<tr>
<td>15</td>
<td>Ammonia (NH₃)</td>
<td>mg/l</td>
<td>40</td>
<td>BDL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BDL</td>
</tr>
<tr>
<td>16</td>
<td>Pesticides</td>
<td>mg/l</td>
<td>0.15</td>
<td>BDL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BDL</td>
</tr>
<tr>
<td>17</td>
<td>Cadmium</td>
<td>mg/l</td>
<td>0.1</td>
<td>BDL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BDL</td>
</tr>
</tbody>
</table>
Results and Discussion

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Parameter</th>
<th>Unit</th>
<th>NEQS* **</th>
<th>Locations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Down Stream of River Ravi Lahore</td>
</tr>
<tr>
<td>18</td>
<td>Chromium as (trivalent and hexavalent)</td>
<td>mg/l</td>
<td>1.0</td>
<td>BDL</td>
</tr>
<tr>
<td>19</td>
<td>Copper</td>
<td>Number</td>
<td>1.0</td>
<td>0.04</td>
</tr>
<tr>
<td>20</td>
<td>Lead</td>
<td>Number</td>
<td>0.5</td>
<td>BDL</td>
</tr>
<tr>
<td>21</td>
<td>Mercury</td>
<td>mg/l</td>
<td>0.01</td>
<td>BDL</td>
</tr>
<tr>
<td>22</td>
<td>Selenium</td>
<td>mg/l</td>
<td>0.5</td>
<td>BDL</td>
</tr>
<tr>
<td>23</td>
<td>Nickel</td>
<td>mg/l</td>
<td>1.0</td>
<td>BDL</td>
</tr>
<tr>
<td>24</td>
<td>Silver</td>
<td>mg/l</td>
<td>1.0</td>
<td>BDL</td>
</tr>
<tr>
<td>25</td>
<td>Total toxic metals</td>
<td>mg/l</td>
<td>2.0</td>
<td>0.041</td>
</tr>
<tr>
<td>26</td>
<td>Zinc</td>
<td>mg/l</td>
<td>5.0</td>
<td>0.21</td>
</tr>
<tr>
<td>27</td>
<td>Arsenic</td>
<td>mg/l</td>
<td>1.0</td>
<td>0.001</td>
</tr>
<tr>
<td>28</td>
<td>Barium</td>
<td>mg/l</td>
<td>1.5</td>
<td>BDL</td>
</tr>
<tr>
<td>29</td>
<td>Iron</td>
<td>mg/l</td>
<td>2.0</td>
<td>0.02</td>
</tr>
<tr>
<td>30</td>
<td>Manganese</td>
<td>mg/l</td>
<td>1.5</td>
<td>BDL</td>
</tr>
<tr>
<td>31</td>
<td>Boron</td>
<td>mg/l</td>
<td>6.0</td>
<td>0.1</td>
</tr>
<tr>
<td>32</td>
<td>Chlorine</td>
<td>mg/l</td>
<td>1.0</td>
<td>BDL</td>
</tr>
<tr>
<td>33</td>
<td>Turbidity</td>
<td>NTU</td>
<td>-</td>
<td>120</td>
</tr>
<tr>
<td>34</td>
<td>Total Nitrogen</td>
<td>mg/l</td>
<td>-</td>
<td>1.2</td>
</tr>
<tr>
<td>35</td>
<td>Phosphorous</td>
<td>mg/l</td>
<td>-</td>
<td>0.89</td>
</tr>
<tr>
<td>36</td>
<td>Potassium</td>
<td>mg/l</td>
<td>-</td>
<td>1.4</td>
</tr>
<tr>
<td>37</td>
<td>Dissolve Oxygen DO</td>
<td>mg/l</td>
<td>-</td>
<td>03</td>
</tr>
</tbody>
</table>

*National Environmental Quality Standards

**There are no Standard for surfacewater in Pakistan

The river Ravi surface water sample found litter higher in pollution load on downstream side however River Sutlej sample found no contamination.
ANNEXURE – I

PHOTO LOG
ANNEXURE – I: PHOTO LOG

Fig1: Ambient Air Monitoring near Multan Road Pattoki

Fig2: Ambient Air Monitoring near shahkot Road

Fig3: Ambient Air Monitoring at farooqabad

Fig4: Ambient Air Monitoring near farooqabad
ANNEXURE - I: PHOTO LOG

Fig5: Noise Level Monitoring near Shahkot Road

Fig6: Noise Level Monitoring near Farooqabad

Fig7: Noise Level Monitoring neat Lahore Shiekhpura Road

Fig8: Noise Level Monitoring Lahore Shiekhpura Road
ANNEXURE – I: PHOTO LOG

Fig9: Groundwater Sampling at Goth Hashim Dhakhna

Fig10: Groundwater Sampling from Lahore South East

Fig11: Groundwater Sampling at Nawa Kot Shiekhpura

Fig12: Groundwater Sampling at Kasur
<table>
<thead>
<tr>
<th>Fig13: Surface water Sampling at</th>
<th>Fig14: Surface water Sampling at BRB Canal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig15: Wastewater Sampling at Upper Chenab</td>
<td>Fig16: Surface water Sampling at Canal</td>
</tr>
</tbody>
</table>
ANNEXURE – I: PHOTO LOG

Fig 17: Surface Water Sampling at River Ravi

Fig 18: Surface Water Sampling at River Ravi
APPENDIX – I

STANDARDS
APPENDIX – I: STANDARDS

AMBIENT AIR QUALITY STANDARDS

<table>
<thead>
<tr>
<th>Pollutants</th>
<th>USEPA</th>
<th>WHO</th>
<th>World Bank</th>
<th>NEQS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Averaging Time</td>
<td>Standard</td>
<td>Averaging Time</td>
<td>Standard</td>
</tr>
<tr>
<td>CO</td>
<td>8 HRS</td>
<td>10 mg/m3 (9 ppm)</td>
<td>8 HRS</td>
<td>10 mg/m3 (9 ppm)</td>
</tr>
<tr>
<td></td>
<td>1 HR</td>
<td>40 mg/m3 (35 ppm)</td>
<td>1 HR</td>
<td>30 mg/m3 (25 ppm)</td>
</tr>
<tr>
<td>NO$_2$</td>
<td>ANNUAL MEAN</td>
<td>100 µg/m3 (50 ppb)</td>
<td>ANNUAL MEAN</td>
<td>40 µg/m3 (20 ppb)</td>
</tr>
<tr>
<td></td>
<td>1 HR</td>
<td>200 µg/m3 (105 ppb)</td>
<td>24 HRS</td>
<td>200 µg/m3 (105 ppb)</td>
</tr>
<tr>
<td>SO$_2$</td>
<td>24 HRS</td>
<td>365 µg/m3 (140 ppb)</td>
<td>24 HRS</td>
<td>125 µg/m3 (48 ppb)</td>
</tr>
<tr>
<td></td>
<td>ANNUAL MEAN</td>
<td>80 µg/m3 (30 ppb)</td>
<td>10 MIN</td>
<td>50 µg/m3 (20 ppb)</td>
</tr>
<tr>
<td></td>
<td>1 HR</td>
<td>500 µg/m3 (190 ppb)</td>
<td>24 HRS</td>
<td>50 µg/m3 (20 ppb)</td>
</tr>
<tr>
<td>TSP</td>
<td>24 HRS</td>
<td>260 µg/m3</td>
<td>24 HRS</td>
<td>150-230 µg/m3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24 HRS</td>
<td>24 HRS</td>
<td>200 g/m3</td>
</tr>
<tr>
<td>PM$_{10}$</td>
<td>24 HRS</td>
<td>150 µg/m3</td>
<td>ANNUAL MEAN</td>
<td>20 µg/m3</td>
</tr>
<tr>
<td></td>
<td>Annual Mean</td>
<td>50 µg/m3</td>
<td>24 HRS</td>
<td>50 µg/m3</td>
</tr>
</tbody>
</table>
WHO WATER QUALITY STANDARDS

A. Bacteriological Qualities

<table>
<thead>
<tr>
<th>Source/Organisms’</th>
<th>Guideline Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. All water intended for drinking (E Coli or thermo tolerant Coliform bacteria)</td>
<td>Must not be detectable in any 100ml Sample</td>
</tr>
<tr>
<td>b. Treated water entering the distribution system (E coli or thermo tolerant Coliform and Total Coliform Bacteria)</td>
<td>Must not be detectable in any 100ml Sample</td>
</tr>
<tr>
<td>c. Treated water in the distribution system (E Coli or thermo tolerant coliform and total coliform bacteria)</td>
<td>Must not be detectable in any 100ml Sample In the case of large supplies, where sufficient samples are examined must not be present in 95% of samples taken throughout any 12-month period</td>
</tr>
</tbody>
</table>

B. Chemicals of Health Significance

<table>
<thead>
<tr>
<th>Inorganic</th>
<th>mg/l</th>
<th>Inorganic</th>
<th>mg/l</th>
<th>Inorganic</th>
<th>mg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimony</td>
<td>0.005</td>
<td>Copper</td>
<td>2.000</td>
<td>Molybdenum</td>
<td>0.070</td>
</tr>
<tr>
<td>Arsenic</td>
<td>0.010</td>
<td>Cyanide</td>
<td>0.070</td>
<td>Nickel</td>
<td>0.020</td>
</tr>
<tr>
<td>Barium</td>
<td>0.700</td>
<td>Fluoride</td>
<td>1.500</td>
<td>Nitrate(NO3)</td>
<td>50.00</td>
</tr>
<tr>
<td>Boron</td>
<td>0.300</td>
<td>Lead</td>
<td>0.010</td>
<td>Nitrate(NO3)</td>
<td>03.00</td>
</tr>
<tr>
<td>Cadmium</td>
<td>0.003</td>
<td>Manganese</td>
<td>0.500</td>
<td>Selenium</td>
<td>0.010</td>
</tr>
<tr>
<td>Chromium</td>
<td>0.050</td>
<td>Mercury</td>
<td>0.001</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C. Other Parameters

<table>
<thead>
<tr>
<th>Inorganic</th>
<th>mg/l</th>
<th>Inorganic</th>
<th>mg/l</th>
<th>Inorganic</th>
<th>mg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colour</td>
<td>15 TCU</td>
<td>1,2 dichlorobenzene</td>
<td>1-10</td>
<td>Hardness, pH, Do</td>
<td>-</td>
</tr>
<tr>
<td>Taste, Odour</td>
<td>-</td>
<td>1-4 dichlorobenzene</td>
<td>0.3-30</td>
<td>Hydrogen Sulfide</td>
<td>0.05</td>
</tr>
<tr>
<td>Turbidity</td>
<td>5 NTU</td>
<td>Dichlorobenzene</td>
<td>5-50</td>
<td>Iron</td>
<td>0.3</td>
</tr>
<tr>
<td>Toluene</td>
<td>24-170</td>
<td>Synthetic detergents</td>
<td>-</td>
<td>Manganese</td>
<td>0.1</td>
</tr>
<tr>
<td>Xylenes</td>
<td>20-1800</td>
<td>Aluminum</td>
<td>0.2</td>
<td>Sodium</td>
<td>200</td>
</tr>
<tr>
<td>Ethyl-benzene</td>
<td>24-200</td>
<td>Ammonia</td>
<td>1.5</td>
<td>Sulfate</td>
<td>250</td>
</tr>
<tr>
<td>Styrene</td>
<td>4-2600</td>
<td>Chloride</td>
<td>250</td>
<td>TDS</td>
<td>1000</td>
</tr>
<tr>
<td>Monochloro</td>
<td>10-120</td>
<td>Copper</td>
<td>1</td>
<td>Zinc</td>
<td>3</td>
</tr>
<tr>
<td>Benzene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PART II

Statutory Notifications (S. R. O.)

GOVERNMENT OF PAKISTAN

MINISTRY OF ENVIRONMENT

NOTIFICATIONS

Islamabad, the 18th October, 2010

S. R. O. 1062(I)/2010.—In exercise of the powers conferred under clause (c) of sub-section (1) of section 6 of the Pakistan Environmental Protection Act, 1997 (XXXIV of 1997), the Pakistan Environmental Protection Agency, with the prior approval of the Pakistan Environmental Protection Council, is pleased to establish the following National Environmental Quality Standards for Ambient Air.

National Environmental Quality Standards for Ambient Air

<table>
<thead>
<tr>
<th>Pollutants</th>
<th>Time-weighted average</th>
<th>Concentration in Ambient Air</th>
<th>Method of measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Effective from 1st July, 2010</td>
<td>Effective from 1st January 2013</td>
</tr>
<tr>
<td>Sulphur Dioxide (SO₂)</td>
<td>Annual Average*</td>
<td>80 µg/m³</td>
<td>80 µg/m³</td>
</tr>
<tr>
<td></td>
<td>24 hours**</td>
<td>120 µg/m³</td>
<td>120 µg/m³</td>
</tr>
<tr>
<td>Oxides of Nitrogen as (NO)</td>
<td>Annual Average*</td>
<td>40 µg/m³</td>
<td>40 µg/m³</td>
</tr>
<tr>
<td></td>
<td>24 hours**</td>
<td>40 µg/m³</td>
<td>40 µg/m³</td>
</tr>
</tbody>
</table>

(3205)

[2944(2010)/Ex. Gaz.] Price: Rs. 5.00
Concentration in Ambient Air

<table>
<thead>
<tr>
<th>Pollutants</th>
<th>Time-weighted average</th>
<th>Effective from 1st July, 2010</th>
<th>Effective from 1st January, 2013</th>
<th>Method of measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxides of Nitrogen as NO<sub>2</sub></td>
<td>Annual Average*</td>
<td>40 µg/m³</td>
<td>40 µg/m³</td>
<td>- Gas Phase Chemiluminescence</td>
</tr>
<tr>
<td></td>
<td>24 hours**</td>
<td>80 µg/m³</td>
<td>80 µg/m³</td>
<td>- Non dispersive UV absorption method</td>
</tr>
<tr>
<td>O<sub>3</sub></td>
<td>1 hour</td>
<td>180 µg/m³</td>
<td>120 µg/m³</td>
<td>- High Volume</td>
</tr>
<tr>
<td>Suspended Particulate Matter (SPM)</td>
<td>Annual Average*</td>
<td>400 µg/m³</td>
<td>360 µg/m³</td>
<td>- Sampling, (Average flow rate not less than 1.1 m³/minute).</td>
</tr>
<tr>
<td></td>
<td>24 hours**</td>
<td>550 µg/m³</td>
<td>500 µg/m³</td>
<td>- β Ray absorption method</td>
</tr>
<tr>
<td>Respirable Particulate Matter, PM<sub>2.5</sub></td>
<td>Annual Average*</td>
<td>200 µg/m³</td>
<td>120 µg/m³</td>
<td>- β Ray absorption method</td>
</tr>
<tr>
<td></td>
<td>24 hours**</td>
<td>250 µg/m³</td>
<td>150 µg/m³</td>
<td></td>
</tr>
<tr>
<td>Respirable Particulate Matter, PM<sub>10</sub></td>
<td>Annual Average*</td>
<td>25 µg/m³</td>
<td>15 µg/m³</td>
<td>- ASS Method after sampling using EPM 2000 or equivalent Filter paper</td>
</tr>
<tr>
<td></td>
<td>24 hours**</td>
<td>40 µg/m³</td>
<td>35 µg/m³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 hour</td>
<td>25 µg/m³</td>
<td>15 µg/m³</td>
<td></td>
</tr>
<tr>
<td>Lead Pb</td>
<td>Annual Average*</td>
<td>1.5 µg/m³</td>
<td>1 µg/m³</td>
<td>- Non Dispersive Infra Red (NDIR) method</td>
</tr>
<tr>
<td></td>
<td>24 hours**</td>
<td>2 µg/m³</td>
<td>1.5 µg/m³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 hour</td>
<td>10 µg/m³</td>
<td>10 µg/m³</td>
<td></td>
</tr>
</tbody>
</table>

*Annual arithmetic mean of minimum 104 measurements in a year taken twice a week 24 hourly at uniform interval.

**24 hourly /8 hourly values should be met 98% of the in a year, 2% of the time, it may exceed but not on two consecutive days.

S. R. O. 1063(I)/2010.— In exercise of the powers conferred under clause (c) of sub-section (1) of section 6 of the Pakistan Environmental Protection Act, 1997 (XXXIV of 1997), the Pakistan Environmental Protection Agency, with the prior approval of the Pakistan Environmental Protection Council, is pleased to establish the following National Standards for Drinking Water Quality.
National Standards for Drinking Water Quality

<table>
<thead>
<tr>
<th>Properties/Parameters</th>
<th>Standard Values for Pakistan</th>
<th>Who Standards</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacterial</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All water intended for drinking (E.Coli or Thermotolerant Coliform bacteria)</td>
<td>Must not be detectable in any 100 ml sample</td>
<td>Must not be detectable in any 100 ml sample</td>
<td>Most Asian countries also follow WHO standards</td>
</tr>
<tr>
<td>Treated water entering the distribution system (E.Coli or thermo tolerant coliform and total coliform bacteria)</td>
<td>Must not be detectable in any 100 ml sample</td>
<td>Must not be detectable in any 100 ml sample</td>
<td>Most Asian countries also follow WHO standards</td>
</tr>
<tr>
<td>Treated water in the distribution system (E. coli or thermo tolerant coliform and total coliform bacteria)</td>
<td>Must not be detectable in any 100 ml sample</td>
<td>Must not be detectable in any 100 ml sample</td>
<td>Most Asian countries also follow WHO standards</td>
</tr>
<tr>
<td>In case of large supplies, where sufficient samples are examined, must not be present in 95% of the samples taken throughout any 12-month period.</td>
<td>In case of large supplies, where sufficient samples are examined, must not be present in 95% of the samples taken throughout any 12-month period.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>≤ 15 TCU</td>
<td>≤ 15 TCU</td>
<td></td>
</tr>
<tr>
<td>Taste</td>
<td>Non objectionable/Acceptable</td>
<td>Non objectionable/Acceptable</td>
<td></td>
</tr>
<tr>
<td>Odour</td>
<td>Non objectionable/Acceptable</td>
<td>Non objectionable/Acceptable</td>
<td></td>
</tr>
<tr>
<td>Turbidity</td>
<td>< 5 NTU</td>
<td>< 5 NTU</td>
<td></td>
</tr>
<tr>
<td>Total hardness as CaCO<sub>3</sub></td>
<td>< 500 mg/l</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>TDS</td>
<td>< 1000</td>
<td>< 1000</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>6.5 – 8.5</td>
<td>6.5 – 8.5</td>
<td></td>
</tr>
<tr>
<td>Chemical</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Essential Inorganic</td>
<td>mg/Litre</td>
<td>mg/Litre</td>
<td></td>
</tr>
<tr>
<td>Aluminium (Al) mg/l</td>
<td>≤ 0.2</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>Properties/Parameters</td>
<td>Standard Values for Pakistan</td>
<td>WHO Standards</td>
<td>Remarks</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------------------------</td>
<td>---------------</td>
<td>---------</td>
</tr>
<tr>
<td>Antimony (Sb)</td>
<td>≤ 0.005 (P)</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>Arsenic (As)</td>
<td>≤ 0.05 (P)</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Barium (Ba)</td>
<td>0.7</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>Boron (B)</td>
<td>0.3</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Cadmium (Cd)</td>
<td>0.01</td>
<td>0.003</td>
<td></td>
</tr>
<tr>
<td>Chloride (Cl)</td>
<td>< 250</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>Chromium (Cr)</td>
<td>≤ 0.05</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>Copper (Cu)</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Toxic Inorganic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyanide (CN)</td>
<td>≤ 0.05</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>Fluoride (F)*</td>
<td>≤ 1.5</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td>≤ 0.05</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Manganese (Mn)</td>
<td>≤ 0.5</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Mercury (Hg)</td>
<td>≤ 0.001</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>Nickel (Ni)</td>
<td>≤ 0.02</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>Nitrate (NO₃)</td>
<td>≤ 50</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Nitrite (NO₂)</td>
<td>≤ 3 (P)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Selenium (Se)</td>
<td>0.01 (P)</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Residual chlorine</td>
<td>0.2-0.5 at consumer end</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.5-1.5 at source</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinc (Zn)</td>
<td>5.0</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

* indicates priority health related inorganic constituents which need regular monitoring.
<table>
<thead>
<tr>
<th>Properties/Parameters</th>
<th>Standard Values for Pakistan</th>
<th>Who Standards</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pesticides mg/L</td>
<td>PSQCA No. 4639-2004</td>
<td>Annex II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Page No. 4 Table No. 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Serial No. 20-58 must be consulted.***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phenolic compounds (as Phenols) mg/L</td>
<td>≤ 0.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pynucleoc aromatic hydrocarbons (as PAH) g/L</td>
<td>0.01 (By GC/MS method)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radioactivity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alpha Emitters bq/L or pCi</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Beta emitters</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

*** PSQCA: Pakistan Standards Quality Control Authority.

Proviso:

The existing drinking water treatment infrastructure is not adequate to comply with WHO guidelines. The Arsenic concentrations in South Punjab and in some parts of Sindh have been found high then Revised WHO guidelines. It will take some time to control arsenic through treatment process. Lead concentration in the proposed standards is higher than WHO Guidelines. As the piping system for supply of drinking water in urban centres are generally old and will take significant resources and time to get them replaced. In the recent past, Lead was completely phased out from petroleum products to cut down Lead entering into environment. These steps will enable to achieve WHO guidelines for Arsenic, Lead, Cadmium and Zinc. However, for bottled water, WHO limits for Arsenic, Lead, Cadmium and Zinc will be applicable and PSQCA Standards for all the remaining parameters.

S. R. O. 1064(I)/2010.—In exercise of the powers conferred under clause (c) of sub-section (1) of section 6 of the Pakistan Environmental Protection Act, 1997 (XXXIV of 1997), the Pakistan Environmental Protection Agency, with the prior approval of the Pakistan Environmental Protection Council, is pleased to establish the following National Environmental Quality Standards for Noise.
National Environmental Quality Standards for Noise

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Category of Area / Zone</th>
<th>Effective from 1st July, 2010</th>
<th>Effective from 1st July, 2012</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Day Time</td>
<td>Night Time</td>
</tr>
<tr>
<td>1.</td>
<td>Residential area (A)</td>
<td>65</td>
<td>50</td>
</tr>
<tr>
<td>2.</td>
<td>Commercial area (B)</td>
<td>70</td>
<td>60</td>
</tr>
<tr>
<td>3.</td>
<td>Industrial area (C)</td>
<td>80</td>
<td>75</td>
</tr>
<tr>
<td>4.</td>
<td>Silence Zone (D)</td>
<td>55</td>
<td>45</td>
</tr>
</tbody>
</table>

Note: 1. Day time hours: 6:00 a.m. to 10:00 p.m.
2. Night time hours: 10:00 p.m. to 6:00 a.m.
3. Silence zone: Zones which are declared as such by the competent authority. An area comprising not less than 100 meters around hospitals, educational institutions and courts.
4. Mixed categories of areas may be declared as one of the four above-mentioned categories by the competent authority.

dB(A) Leq: Time weighted average of the level of sound in decibels on scale A which is relatable to human hearing.

[No. F. I(12)/2010-11-General.]

MUHAMMAD’KHALIL AWAN,
Section Officer (PEPC).
PART-II
Statutory Notification (S.R.O)

GOVERNMENT OF PAKISTAN

MINISTRY OF ENVIRONMENT, LOCAL GOVERNMENT AND RURAL DEVELOPMENT

NOTIFICATION

Isamabad, the 8th August 2000

S.R.O. 549 (I)/2000. In exercise of the powers conferred under clause (c) of sub-section (1) of section of 6 of the Pakistan environmental Protection Act. 1997 (XXXIV of 1997), the Pakistan Environmental Protection Agency, with the prior approval of the Pakistan Environmental Protection Council, is pleased to direct that the following further amendments shall be made in its Notification No. S.R.O. 742(I)/93, dated the 24th August, 1993, namely: ___

In the aforesaid Notification, in paragraph 2._____ (1289)

[4138(2000)/Ex.GAZ]

Price : Rs. 5.00
Annex-I

“NATIONAL ENVIRONMENTAL QUALITY STANDARDS FOR MUNICIPAL AND LIQUID INDUSTRIAL EFFlUENTS (mg/I, UNLESS OTHERWISE DEFINED)

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Parameter</th>
<th>Existing Standards</th>
<th>Revised Standards</th>
<th>Into Inland Waters</th>
<th>Into Sewage Treatment</th>
<th>Into Sea</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Temperature or Temperature Increase *</td>
<td>40°C</td>
<td>≤3°C</td>
<td>≤3°C</td>
<td>≤3°C</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>pH value (H+)</td>
<td>6-10</td>
<td>6-9</td>
<td>6-9</td>
<td>6-9</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Biochemical Oxygen Demand (BOD₅) at 20°C</td>
<td>80</td>
<td>80</td>
<td>250</td>
<td>80**</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Chemical Oxygen Demand (COD)</td>
<td>150</td>
<td>150</td>
<td>400</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Total Suspended Solids (TSS)</td>
<td>150</td>
<td>200</td>
<td>400</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Total Dissolved Solids (TDS)</td>
<td>3500</td>
<td>3500</td>
<td>3500</td>
<td>3500</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Oil and Grease</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Phenolic compounds (as phenol)</td>
<td>0.1</td>
<td>0.1</td>
<td>0.3</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Chloride (as Cl⁻)</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>SC***</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Fluoride (as F⁻)</td>
<td>20</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Cyanide (as CN⁻) total.</td>
<td>2</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>An-ionic detergents (as MBAS)</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Sulphate (SO₄²⁻)</td>
<td>600</td>
<td>600</td>
<td>1000</td>
<td>SC***</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Sulphide (S⁻)</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Ammonia (NH₃)</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Pesticides (³)</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>17.</td>
<td>Cadmium (4) ..</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>18.</td>
<td>Chromium (trivalent and hexavalent (4)) ..</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>19.</td>
<td>Cooper (4) ..</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>20.</td>
<td>Lead (4) ..</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>21.</td>
<td>Mercury (4) ..</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>22.</td>
<td>Selenium (4)</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>23.</td>
<td>Nickel (4) ..</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>24.</td>
<td>Silver (4)</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>25.</td>
<td>Total toxic metals ..</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>26.</td>
<td>Zinc</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>27.</td>
<td>Arsenic (4) ..</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>28.</td>
<td>Barium (4) ..</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>29.</td>
<td>Iron</td>
<td>2.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td></td>
</tr>
<tr>
<td>30.</td>
<td>Manganese ..</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>31.</td>
<td>Boron (4) ..</td>
<td>6.0</td>
<td>6.0</td>
<td>6.0</td>
<td>6.0</td>
<td></td>
</tr>
<tr>
<td>32.</td>
<td>Chlorine</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>

Explanations:

1. Assuming minimum dilution 1:10 on discharge, lower ratio would attract progressively stringent standards to be determined by the Federal Environmental Protection Agency. By 1:10 dilution means, for example that for each one cubic meter of treated effluent, the recipient water body should have 10 cubic meter of water for dilution of this effluent.

2. Methylene Blue Active Substances; assuming surfactant as biodegradable.

3. Pesticides include herbicides, fungicides, and insecticides.

4. Subject to total toxic metals discharge should not exceed level given at S. N. 25.

5. Applicable only when and where sewage treatment is operational and $BOD_5=80\text{mg/l}$ is achieved by the sewage treatment system.
6. Provided discharge is not at shore and not within 10 miles of mangrove or other important estuaries.

* The effluent should not result in temperature increase of more than 3°C at the edge of the zone where initial mixing and dilution take place in the receiving body. In case zone is not defined, use 100 meters from the point of discharge.

** The value for industry is 200 mg/I

*** Discharge concentration at or below sea concentration (SC).

Note:_____
1. Dilution of liquid effluents to bring them to the NEQS limiting values is not permissible through fresh water mixing with the effluent before discharging into the environment.

2. The concentration of pollutants in water being used will be substracted from the effluent for calculating the NEQS limits” and

(2) for Annex-II the following shall be substituted, namely:____

Annex-II

“NATIONAL ENVIRONMENTAL QUALITY STANDARDS FOR INDUSTRIAL GASEOUS EMISSION (mg/Nm³, UNLESS OTHERWISE DEFINED).”

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Parameter</th>
<th>Source of Emission</th>
<th>Existing Standards</th>
<th>Revised Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Smoke</td>
<td>Smoke opacity not to exceed</td>
<td>40% or 2 Ringlemann Scale</td>
<td>40% or 2 Ringlemann Scale or equivalent smoke number</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Particulate matter</td>
<td>(a) Boilers and Furnaces</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(i) Oil fired</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(ii) Coal fired</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(iii) Cement Kilns</td>
<td>200</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(b) Grinding, crushing, Clinker coolers and Related processes, Metallurgical</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Processes, converter, blast furnaces and cupolas.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Hydrogen Chloride</td>
<td>Any</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>Description</td>
<td>Type</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>-------</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>4.</td>
<td>Chlorine</td>
<td>Any</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>5.</td>
<td>Hydrogen Fluoride</td>
<td>Any</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>6.</td>
<td>Hydrogen Sulphide</td>
<td>Any</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>7.</td>
<td>Sulphur Oxides (^{(2),(3)}) Sulfuric acid/Sulphonic acid plants</td>
<td>Other Plants except power plants operating on oil and coal</td>
<td>400</td>
<td>1700</td>
</tr>
<tr>
<td>8.</td>
<td>Carbon Monoxide</td>
<td>Any</td>
<td>800</td>
<td>800</td>
</tr>
<tr>
<td>9.</td>
<td>Lead</td>
<td>Any</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>10.</td>
<td>Mercury</td>
<td>Any</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>11.</td>
<td>Cadmium</td>
<td>Any</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>12.</td>
<td>Arsenic</td>
<td>Any</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>13.</td>
<td>Copper</td>
<td>Any</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>14.</td>
<td>Antimony</td>
<td>Any</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>15.</td>
<td>Zinc</td>
<td>Any</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>16.</td>
<td>Oxides of Nitrogen</td>
<td>Nitric acid manufacturing unit.</td>
<td>400</td>
<td>3000</td>
</tr>
</tbody>
</table>

\(^{(3)}\) Other plants except power plants operating on oil or coal:

- Gas fired: 400 400
- Oil fired: - 600
- Coal fired: - 1200

Explanations:

1. Based on the assumption that the size of the particulate is 10 micron or more.

2. Based on 1 percent Sulphur content in fuel oil. Higher content of Sulphur will case standards to be pro-rated.

3. In respect of emissions of Sulphur dioxide and Nitrogen oxides, the power plants operating on oil and coal as fuel shall in addition to National Environmental Quality Standards (NEQS) specified above, comply with the following standards:-
A. Sulphur Dioxide

Sulphur Dioxide Background levels Micro-gram per cubic meter (ug/m³) Standards.

<table>
<thead>
<tr>
<th>Background Air Quality (SO₂ Basis)</th>
<th>Annual Average</th>
<th>Max. 24-hours Interval</th>
<th>Criterion I Max. SO₂ Emission (Tons per Day Per Plant)</th>
<th>Criterion II Max. Allowable ground level increment to ambient (ug/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unpolluted</td>
<td><50</td>
<td><200</td>
<td>500</td>
<td>50</td>
</tr>
<tr>
<td>Moderately Polluted*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>50</td>
<td>200</td>
<td>500</td>
<td>50</td>
</tr>
<tr>
<td>High</td>
<td>100</td>
<td>400</td>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>Very Polluted**</td>
<td>>100</td>
<td>>400</td>
<td>100</td>
<td>10</td>
</tr>
</tbody>
</table>

* For intermediate values between 50 and 100 ug/m³ linear interpolations should be used.

** No projects with Sulphur dioxide emissions will be recommended.

B. Nitrogen Oxide

Ambient air concentrations of Nitrogen oxides, expressed as NOₓ should not exceed the following:

- **Annual Arithmetic Mean**
 - 100 ug/m³ (0.05 ppm)

Emission level for stationary source discharge before missing with the atmosphere, should be maintained as follows:

For fuel fired steam generators as Nanogram (10⁹ gram) per joule of heat input:

- Liquid fossil fuel 130
- Solid fossil fuel 300
- Lignite fossil fuel 260

Note:

Dilution of gaseous emissions to bring them to the NEQS limiting value is not permissible through excess air mixing blowing before emitting into the environment.

[File No. 14(3)/98-TO-PEPC.]
Appendix-III

Hydrological Study Report
HYDROLOGICAL STUDY REPORT FOR
MASTER PLAN FOR LAHORE DIVISION, PROJECT
DISTRICTS LAHORE, KASUR, NANKANA SAHB & SHEIKHUPURA

Haris Engineering & Management Consultant
Pakistan
(HEMC PAK)

Source: Environment Canada, USGS
MASTER PLAN FOR LAHORE DIVISION PROJECT
Districts Lahore, Kasur, Sheikhupura & Nankana Sab

Hydrological Study Report

Lahore Development Authority (LDA), Lahore.
TABLE OF CONTENTS

TABLE OF CONTENTS ... I
LIST OF FIGURES .. III
LIST OF TABLES ... IV
HYDROLOGY OF THE PROJECT AREAS ... 1
1.1. General ... 1
1.2. Description of Planned Area ... 1
1.3. Climate of Lahore Division .. 3
1.4. Surface Water Availability: .. 5
 1.4.1. Rivers ... 5
 1.4.1.1. Ravi River ... 5
 1.4.1.2. Deg Nallah .. 7
 1.4.2. Flows in Ravi River: .. 8
 1.4.2.1. Average flows ... 8
 1.4.2.2. Floods .. 10
 1.4.2.3. Water Quality .. 11
 1.4.3. Sutlej River ... 12
 1.4.3.1. Structures on Sutlej River: ... 12
 1.4.3.2. Floods .. 13
 1.4.3.3. Water Quality .. 14
 1.4.4. Canals ... 14
 1.4.4.1. Marala Ravi Link Canal ... 14
 1.4.4.2. Upper Chenab Canal ... 14
 1.4.4.3. Banbawali Ravi Bedian Canal .. 14
 1.4.4.4. Lower Chenab Canal ... 14
 1.4.4.5. Qadirabad-Bulloki Link Canal ... 14
 1.4.4.6. Lower Bari Doab Canal ... 15
 1.4.4.7. Balloki – Sulemanki Link Canal ... 15
1.5. GROUND WATER ... 15
 1.5.1. Ground Water Quality: .. 16
 1.5.2. Groundwater Challenges: ... 16
 1.5.3. Conservation of Groundwater: ... 17
 1.5.4. Ground Water Recharge: ... 19
1.6. Discussion on Each Site: .. 20
 1.6.1. Allah Abad .. 20
 1.6.2. Bhai Pheru ... 20
 1.6.3. Bhikhi ... 20
 1.6.4. Bucheki ... 20
 1.6.5. Changa Manga .. 21
 1.6.6. Chunian ... 21
Table of Contents

1.6.7. Farooqabad ... 21
1.6.8. Feroz Wattwan ... 21
1.6.9. Ferozpur Road & BRB Canal ... 22
1.6.10. Ferozwala ... 22
1.6.11. Industrial Estate .. 22
1.6.12. Jamber .. 22
1.6.13. Jandiala Sher Khan .. 23
1.6.14. Jaranwala Road ... 23
1.6.15. Jhabran ... 23
1.6.16. Kanganpur ... 23
1.6.17. Kasur ... 24
1.6.18. Khanqah Dogran ... 24
1.6.19. Khuddian Khas ... 24
1.6.20. Kot Radha Kishan ... 24
1.6.21. Lahore Muridke Road .. 24
1.6.22. Lahore Sheikhupura Road .. 25
1.6.23. Mananwala ... 25
1.6.24. Mandi Faizabad ... 25
1.6.25. Mor Khunda .. 25
1.6.26. Muridke ... 26
1.6.27. Mustafa Abad .. 26
1.6.28. Nankana Sab ... 26
1.6.29. Narang Mandi .. 27
1.6.30. Pattoki ... 27
1.6.31. Raiwind & Multan Road .. 27
1.6.32. Raja Jang ... 27
1.6.33. Rao Khan Wala ... 28
1.6.34. Saldaresabad .. 28
1.6.35. Sangla Hil .. 28
1.6.36. Shahkot-I .. 28
1.6.37. Shahkot-II ... 29
1.6.38. Sharqpur ... 29
1.6.39. Sheikhupura .. 29
1.6.40. Syed Wala ... 29
1.6.41. Talwandi ... 30
1.6.42. Warburton ... 30
1.7. Floods ... 30
1.8. Conclusion ... 33
LIST OF FIGURES

Figure 1 Temperature Data of Lahore Region (Data Source: Climatic Data Processing Centre (CDPC), Pakistan Meteorological Department, Karachi) ... 3
Figure 2 Average Rainfall of Lahore Region (Data Source: Climatic Data Processing Centre (CDPC), Pakistan Meteorological Department, Karachi) ... 4
Figure 3 Average Relative Humidity of Lahore Region (Data Source: Climatic Data Processing Centre (CDPC), Pakistan Meteorological Department, Karachi) ... 4
Figure 4 Average wind speed of Lahore Region (Data Source: Climatic Data Processing Centre (CDPC), Pakistan Meteorological Department, Karachi) ... 5
Figure 5 Average Discharge (cusecs) in Ravi River in each month from 2000 to 2013 .. 9
Figure 6 Average Annual Discharge (cusecs) in Ravi River from 2000 to 2013 .. 9
Figure 7 Vertical Level Difference between Kasur and River Sutlej 13
Figure 8 Flood in Rivers of Pakistan-2014, NDMA 31
Figure 9 Flood Early Warning Centre (Source- DRP-2013) 32
LIST OF TABLES

Table 1 List of Bridges on River Ravi...7
Table 2 Flood Frequency Analysis..10
HYDROLOGY OF THE PROJECT AREAS

1.1. General

This Chapter provides an overview of the hydrological condition and hydraulic activities in the subject area. The report is focused on studying the impacts of planned settlements on hydrology of area. The report will be helpful in understanding the present and future conditions of groundwater aquifer, canals and hydraulic structures in Lahore Division. This chapter further discuss the possibilities of flood risk and mitigation measures to be adopted.

The planned area is rich in hydrological assets, which is further supplemented by hydrological flows of link canals. It is important to keep all these elements under consideration for an integrated planning, without missing any important parameter.

1.2. Description of Planned Area

A master plan is prepared for Lahore Division by Lahore Development Authority, which includes Lahore, Shiekhupura, Kasur and Nankana Sahib Districts. This division is a part of Punjab Province of Pakistan. Geologically, this area is a part of lower Indus Basin. The name “Punjab” itself is an indicative of healthy presence and importance of rivers in this area. This word “Punjab” comes from ‘punj-aab’, meaning five rivers. The five rivers of Punjab were Sutlej, Bias, Ravi, Jehlum and Chenab Rivers; Bias River of which have discontinued to flow in Pakistan, as discussed later. This blessing of rivers has resulted in cultivation on mast part of land in Punjab as well as in the study area.

Two main rivers pass from Lahore Division, Ravi River and Sutlej River. The slope of the land in planned area is to the south-west, which directs the rivers to flow in this path. Average slope of the area is 0.32m/km.
These rivers have a major contribution in glorious history of the Lahore Division. All the "historical assets" of Lahore, including but not limited to Lahore Fort, Badshahi Mosque and Kamran ki Baradari, were built adjacent to Ravi River.

As per the Indus basin treaty of 1960, six major rivers were divided among Pakistan and India. The rights of Eastern Rivers (Sutlej, Bias and Ravi) were allocated to India, while the rights of Western Rivers (Chenab, Jehlum and Indus) were reserved with Pakistan. Since the Indus basin treaty, India has completed series of structures on eastern rivers to store and divert water from upstream and use it for generation of electricity and irrigation. These interventions have put a stop to ecological and sustainable flows in these rivers, thereby depriving the downstream areas of Pakistan, including Lahore Division from naturally available water for irrigation. Two of the rivers, Ravi and Sutlej, allocated to India, still flows seasonally through the study area. While Bias River have discontinued to flow. The old bed of Bias River still exists in Kasur. To meet the irrigation demands, Pakistan constructed multiple link canals which divert water from western rivers to Eastern Rivers.

The following link canals pass through the planned area:

i. Bambanwala Ravi Bedian Link Canal
ii. Qadirabad-Bulloki Link Canal
iii. Balloki – Sulemanki Link
iv. Lower Bāri Doāb Canal
v. Upper Chenab Canal
vi. Lower Chenab Canal

In addition, the following hydraulic structures lie inside our study area

i. Balloki Barrage
ii. BRB-Ravi Siphon

The planned area also have abundance of water in the form of groundwater aquifer.
1.3. **Climate of Lahore Division**

Lahore Division experiences wide variation in temperature. The coldest month is January in which the mean maximum temperature is 19.4 °C and the mean minimum temperature is 6.6 °C. June is the hottest month with the mean maximum temperature near 39.8 °C and the mean minimum temperature as 27.4 °C. Mean temperature of the region during the last 20 years (1991-2010) is given in Figure (1).

![Temperature Data of Lahore](image)

Figure 1 Temperature Data of Lahore Region (Data Source: Climatic Data Processing Centre (CDPC), Pakistan Meteorological Department, Karachi)

The average annual rainfall during the last 20 years period from (1991-2010) is calculated to be 55.25 mm. Nearly 70% of it is received in the form of high intensity showers during the monsoon (July, August, September) and the remaining in winter. One daily Max rainfall was recorded in 2014, equal to 213mm. The average monthly rainfall at Lahore during the last 20 years (1991-2010) is also shown in Figure (2).
The most humid period is the month of August with maximum average relative humidity of 85.3% and minimum average relative humidity of 61.2%. The average relative humidity of Lahore region for last 20 years (1991-2010) recorded is shown in Figure (3).
During cold seasons of the year northern winds prevail and during hot seasons southern winds. Monthly mean velocity of the wind (Knots) taken for the period 1991-2010 are shown in Figure (4).

![Wind Speed Chart]

Figure 4 Average wind speed of Lahore Region (Data Source: Climatic Data Processing Centre (CDPC), Pakistan Meteorological Department, Karachi)

1.4. Surface Water Availability:

1.4.1. Rivers

As discussed earlier, two main Rivers pass from the planned area, Ravi River and Sutlej River.

1.4.1.1. Ravi River

The Ravi River originates in the Himalayas in the Multhan Tehsil of Kangra District of Himachal Pradesh, India and is mostly fed by snow melt. Many tributaries join Ravi River downstream of its source. It then flows along the Indo–Pak border for 80 kilometres (50 mi) before entering Pakistan and flows past Lahore City. South of the town of Ahmadpur, Ravi River finally joins the Chenab River. The total length of the river is about 725 kilometres.

According to Indus Water treaty (1960), rights of River Ravi belongs to India. India diverts water of the river for generation of electricity and cultivation of its agricultural
lands. Due to construction of series of headworks on Ravi River in the past decade, its flow path and pattern and intensity has changed tremendously, with its course shifting towards west. (Thomas and Sharma, 1998)

The following hydraulic structures are constructed on Ravi River which affects flow pattern in Lahore Division.

Thein Dam

Thein Dam was completed and put into operation in ___ in India, Thein Dam is constructed for generation of electricity and to supply water for irrigation. Thein Dam has spillway capacity of 870,047 cusecs.

Shahpur Kandi Dam

Shahpur Kandi Dam lies downstream of Thein Dam and currently under construction. It is being constructed to provide a balancing reservoir, to have uniform water releases for canals, make excess water available for diversion into canals and for generation of electricity. Shahpur Kandi Dam has spillway capacity of 7,50,400 cusec.

Madhopur Headwork I

Madhopur Headwork lies further downstream of Shahpur Kandi Dam and is built to divert water for the purpose of irrigation.

Balloki Barrage

Balloki Barrage lies in planned area of Lahore Division, which lies at a distance of 29km from Lahore City. Two important canals, Balloki Sulemanki Link Canal and Lower Bari Doab offtakes from Balloki Barrage. Balloki Barrage has spillway capacity of 385,000 cusecs.

Ravi River is supplemented by the four natural drains inside border of Pakistan, namely Ujh, Bein, Basantar and Deg Nullahs.

A number of fresh water input in the form of link canals also increases the river flow and canals taking off at head works reduce the flows in the river. In the vicinity of Lahore Divisions, three link canals are very important.
Marala-Ravi (M-R) link canal joins the river about 40km upstream of Lahore. The canal is mainly used to divert the flood flows and as such does not contribute to the river flows during the low flow period. M-R Link Canal has design capacity of 22,500 cusecs.

- Upper Chenab (U.C) canal with the capacity of 7770 cusecs at the tail and joins the river at 42km downstream of Lahore.
- Qaderabad (Q.B) link canal with the capacity of 14,480 cusecs joins the river at 60km downstream of Lahore.

Water is diverted from Ravi into B.S. link canal and L.B.D. Canals at Balloki head work. The combined capacity of these canals is to the tune of 29,000 cusecs. These canals reduce the flow in the river downstream of Balloki head works.

1.4.1.2. Deg Nallah:
Deg Nallah is another tributary of Ravi River, which originates from Indian held Kashmir. After entering into Pakistan, Deg Nallah crosses M-R Link Canal and BRBD Canal, where cross drainage structures are provided. It joins Ravi River 18Km downstream of Shahdara Town.

The nallah is of special importance due to its flood risk in some parts of Sheikhupura. Main effectees of Deg Nallah are currently estimated to be around 0.5 million farmers. Deg Nallah has flow capacity of only 25,000 cusecs, which is less than flood of 10 years return period in this nallah.

The following areas are under threat from flooding in Deg Nallah

- Ferozwala
- Jaranwala Road
- Muridke

The following bridges are present on Ravi River in Lahore District (Table 1):

<table>
<thead>
<tr>
<th>Bridge</th>
<th>Clear width (ft)</th>
<th>Hydraulic Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Railway Bridge</td>
<td>1450</td>
<td>250,000 cusecs</td>
</tr>
</tbody>
</table>
Hydrology of the Project Areas

<table>
<thead>
<tr>
<th>Bridge</th>
<th>Flow Rate</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Old Ravi Bridge</td>
<td>1450</td>
<td>250,000 cusecs</td>
</tr>
<tr>
<td>New Ravi (Shahdara) Bridge</td>
<td>1660</td>
<td>350,000 cusecs</td>
</tr>
<tr>
<td>Saghian Bridge</td>
<td>2150</td>
<td>450,000 cusecs</td>
</tr>
<tr>
<td>Motorway Bridge</td>
<td>2225</td>
<td>450,000 cusecs</td>
</tr>
<tr>
<td>Head Balloki Bridge</td>
<td>1635</td>
<td>385,000 cusecs</td>
</tr>
</tbody>
</table>

1.4.2. Flows in Ravi River:

1.4.2.1. **Average Flows**

Investigations indicate that flows in the river are highly variable with time during the year which is directly resultant of structural interventions from Indian side and Monsoon Rainfalls. The inflows in Ravi River are measured by gauging stations installed on Railway Bridge near Shahdara and at Ravi Siphon.

Monthly average flows (cusecs) at Shahdara and Ravi Siphon are tabulated in Table (1) for the period 2000 to 2013. Monthly average flows are also listed in Table (1). It indicates that flow available from October to March is very less. The average flow in these six months is 1,638 cusecs with low value of 1371 cusecs that was observed in the month of November. Flows are available in abundance for the Kharif season, 12,315 cusecs in these six months from 2001 to 2013. The maximum flow could reach to 18000 cusecs in the month of July while it may come to very low value (1,200 cusecs) in the month of December (Figure 5).
The temporal distribution of the mean annual flows at the Shahdara site is given in Figure (6) from 2001-2013. The Figure shows that mean annual flow was highest in 2003 having a value of 10,518 cusecs and minimum mean annual flow in 2010 with a value of 4,128 cusecs.
1.4.2.2. Floods:
The flood of 1988, with magnitude of 570,000 cusecs at Shahdara, was the worst flood of 20th century to hit Lahore City. The flood claimed 731 lives and displaced 1,250,000 people. The Shahdara Distributary bund was breached causing heavy flooding of the area between Shahdara and Kala Shah Kaku. Downstream, the Balloki and Sidhnai head works were subjected to discharges far in excess of their design capacities, and embankments were breached to save the structures.

The 1955 flood is the second highest on record flood for the Ravi River, with peak discharges of 5,59,000 cusecs at Ravi Siphon. It breached the flood embankments of the Bambanwala–Ravi–Bedian–Dipalpur Link Canal, upstream from Ravi Siphon, and at Shahdara Bridge. The Punjab Irrigation Department estimated that flood discharges of 259,000 cusecs passed through the breaches at Ravi Siphon and 300,000 m3/s through the breaches at Shahdara Bridge.

A flood frequency analysis was performed by Gumble (extreme value Type-I method) using annual peak flood data for Lahore at Shahdara. The analysis gives following results:

<table>
<thead>
<tr>
<th>Return Period (T)</th>
<th>Probability of occurrence (T)</th>
<th>Discharge (cusecs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Years)</td>
<td>(%)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>50.00</td>
<td>73,303</td>
</tr>
<tr>
<td>5</td>
<td>20.00</td>
<td>152,280</td>
</tr>
<tr>
<td>10</td>
<td>10.00</td>
<td>204,569</td>
</tr>
<tr>
<td>20</td>
<td>5.00</td>
<td>254,726</td>
</tr>
<tr>
<td>25</td>
<td>4.00</td>
<td>270,637</td>
</tr>
<tr>
<td>40</td>
<td>2.50</td>
<td>303,924</td>
</tr>
<tr>
<td>50</td>
<td>2.00</td>
<td>319,650</td>
</tr>
<tr>
<td>100</td>
<td>1.00</td>
<td>368,301</td>
</tr>
<tr>
<td>200</td>
<td>0.50</td>
<td>416,774</td>
</tr>
<tr>
<td>500</td>
<td>0.20</td>
<td>480,725</td>
</tr>
<tr>
<td>1,000</td>
<td>0.10</td>
<td>529,058</td>
</tr>
</tbody>
</table>
As per international practice, safety for cities and barrages are checked against a design flood of 100 years return period, which comes out to be 368,301 cusecs. The peak floods of 5,59,000 cusecs and 570,000 cusecs were recorded before construction of Thein Dam and Shahpur Kundi Dam on Ravi River.

The following settlements can come under threat for a flood of more than 100 years return period.

i. Bucheki
ii. Mor Khunda
iii. Mandi Faizabad

For establishment of industrial area, further detailed hydraulic analysis is required to assess probability, nature and magnitude of flood at a specific site.

1.4.2.3. Water Quality:

The quality of Ravi River has deteriorated heavily with increase in urbanization around it; both in Indian and Pakistan. A decreasing trend in DO levels and an increase trend in BOD, TDS, total and Faecal Coliforms has been observed in Ravi over time. The discharge of untreated wastewater from the city and nearby industrial estates into the river is the main cause of deterioration in its water quality. (Ahmad and Ali, 1997).

The river acts as a domestic wastewater and industrial effluent carrier from Kala Shah Kaku, Lahore-Shiekhupura Road, Kot Lakhpat Industrial Estate and Multan Road. Further, the entire municipal waste from Lahore city is collected through a network of 14 main drains and discharged into the River Ravi without any treatment. The industrial waste is directly discharged into the canal system by 271 industrial units. These industries include textile, chemical, food processing, pulp and paper, poultry, dairy, plastic, paint, pesticides, leather, tanneries and pharmaceuticals.

Another source of pollution is the HUDIARA Drain. All along its route in India and Pakistan wastewater, sewage, and industrial pollutants are discharged into the drain without proper prior treatment. In India, Amritsar and many smaller towns and
villages besides industries, discharge untreated wastewater into this drain. Currently, there are around 100 industries located along the Hudiara Drain, which discharge wastewater directly into the River Ravi. (JICA, 2010).

The wastewater discharged into the River Ravi contains liquid and solid waste from domestic, industrial, and commercial premises, including but not limited to toilet waste, grey water (household wastewater of kitchens, bathrooms and laundries), sludge, trade wastes and gross solids. According to very conservative estimates, approximately 730 tons/day of Biological Oxygen Demand load is added to the River Ravi.

Municipal and industrial toxicants, such as metals pose serious risk to living species. Heavy metals not only affect health and wellbeing of nearby societies, but is also affecting ground water quality of Lahore due to seepage. (Shakir and Qazi 2013).

1.4.3. **Sutlej River**

Sutlej River is also a part of Indus Basin Rivers which flows past Kasur District. The source of the Sutlej River is near Lake Rakshastal in Tibet. From there, it flows at first west-northwest for about 260 kilometres (160 mi) to the Shipki La pass, entering India in Himachal Pradesh state. It then turns slightly, heading west-southwest for about 360 kilometres (220 mi) to meet the Beas River near Makhu, Firozpur district in Punjab state of India. Continuing west-southwest, the Sutlej enters Pakistan about 15 kilometres (9.3 mi) east of Bhedian Kalan, Kasur District, Punjab Province, continuing southwest to join Indus River.

The waters of the Sutlej River are also allocated to India under the Indus Waters Treaty between India and Pakistan, and are mostly diverted to irrigation canals within India.

1.4.3.1. **Structures on Sutlej River:**

In year 1963, India completed Bhakra Dam on Sutlej River to store and use water for production of electricity and divert water for irrigation purpose. The dam is operational and has spillway capacity of 400,000 cusecs.
Just upstream of border, where Sutlej River enters Pakistan, Hussainwala Headwork is present on river. This headwork was constructed in 1926 and currently has spillway capacity of 4,50,000 cusecs.

Within or upstream of Lahore District, the Sutlej River is not supplemented by any link canal.

1.4.3.2. Floods

Most of the flow in Sutlej River is yielded by heavy monsoon rains. The winter flow is substantially lower when there is little rain or snowmelt from the Himalayan glaciers. The risk of floods has drastically reduced since construction of series of dams on Sutlej River by India. The flood in Sutlej River during floods of August 2015 was estimated to be between 45,000 Cusecs to 55,000 Cusecs.

The planned settlements of Lahore Division are generally safe from moderate floods in Chenab River. The metropolitan area of Kasur is roughly 10km away from Sutlej River. Further, the BRBD Canal, lying between Kasur and Sutlej River, is acting as protection bund. Similar is the case with the settlement of Khuddian Khas and Kanganpur. All settlements in planned area were safe during the floods of 2015.
1.4.3.3. Water Quality

Water quality of Sutlej River inside Pakistan have not been determined. The water coming from Indian side contains toxic chemicals and heavy metals which makes it unsafe for drinking.

1.4.4. Canals

The total surface water diverted to Lahore for irrigation is 6.02 MCM/day. However, water available for agricultural use is only 3.0 MCM/day as the rest is lost en-route as seepage from main and distributary canals, percolation losses from watercourses and farmer fields.

Following are the canals which pass through Lahore Division;

1.4.4.1. Marala Ravi Link Canal

Marala Ravi Link Canal originates from Chenab River at Marala Headwork and meets Ravi River, 59Km upstream of Railway Bridge. MR Link Canal has design capacity of 22,500 cusecs.

1.4.4.2. Upper Chenab Canal

Upper Chenab Canal originates from Chenab River at Marala Headwork and meets Ravi River, 32Km upstream of Balloki Barrage. Upper Chenab Canal has design capacity of 7770 cusecs. The Deg Nallah also meets Upper Chenab Canal, 22Km upstream from its confluence with Ravi River.

1.4.4.3. Banbawali Ravi Bedian Canal

Banbawali Ravi Bedian Canal offtakes from Upper Chenab Canal, which was constructed for defense purposes. Multiple Branch Canals also originate from Upper Chenab Canal for irrigation.

1.4.4.4. Lower Chenab Canal

Lower Chenab Canal offtakes from Chenab Canal at Khanki Headwork and is used for irrigation in Punjab Region.

1.4.4.5. Qadirabad-Bulloki Link Canal

Qadirabad-Bulloki Link Canal originates from Chenab River at Qadirabad Barrage. The canal is used to supplement water from Chenab River into Ravi River. The Q-B
Link Canal meets Ravi River 15Km upstream of Balloki Barrage. QB Link Canal has design capacity of 14,480cusecs.

1.4.4.6. Lower Bari Doab Canal

Lower Bari Doab Canal originates from Ravi River and is mainly used for irrigation purpose.

1.4.4.7. Balloki – Sulemanki Link Canal

Balloki-Sulemanki Link Canal originates from Ravi River at Balloki Barrage and is used to divert water towards Sutlej River.

Lower Bari Doab Canal and Balloki – Sulemanki Link Canal have combined design capacity of around 29000 cusecs.

1.5. GROUND WATER

The groundwater has been the only source of domestic water supply since British Era. It is still used to meet industrial, commercial and agricultural demands. This vast usage of groundwater determines its vital position in long term sustainability of future developments. The Lahore.

The aquifer of Lahore District is broadly viewed as a single contiguous, unconfined aquifer. The presence of alluvial soil, frequent flooding and excessive rains in this region for hundreds of years have enriched this aquifer with abundance of water. This aquifer is about 1310ft deep with high transmission of about 22,604 ft²/day (assuming 262.5ft thickness contributing to groundwater flow). The aquifer extends from Lahore to the Piedmont area of foothills in Jammu and Kashmir in a north eastern direction (about 100 km). In the downstream direction it extends to the Arabian Sea at a distance of about 1,000 km (WAPDA, 1980).

Groundwater is extracted from a depth of 400-1300ft. Pumped water is widely used for irrigation, domestic, industrial and commercial purposes. Despite presence of link canals, the farmer falls short of water to irrigate crops. In order to meet the demands, more than 10,000 tube wells have been installed for agricultural purposes. Only for Lahore, the total groundwater discharge from the aquifer for domestic, industrial and agricultural purposes is 5813 Acre-ft/day (253.2 million Cft/day)
As estimated by WWF, in Lahore District, the industrial sector consumes 13 per cent, agriculture uses 24 per cent and the remaining 10 per cent is consumed by the institutional sector. The average recharge to groundwater is 5269.6 acre-ft/day (229.55 million Cft/day). The recharge from the River Ravi is estimated to be 4302 acre-ft/year along its length, from canals 329 acre-ft/day, from rainfall 304.3 acre-ft/day and groundwater return flow 334 acre-ft/day.

1.5.1. Ground Water Quality:

Regular groundwater water quality monitoring is carried out by Water and Sanitation Agency (WASA), Punjab Irrigation Department (PID), Pakistan Council of Research in Water Resources (PCRWR) and the Environmental Protection Agency (EPA).

A national study on water quality which was conducted in 2001 by the Pakistan Council of Research in Water Resources (PCRWR) noted such issues as high arsenic and fluoride concentrations in WASA bore holes in Lahore. The highly arsenic contaminated groundwater is found at shallow water-table depths of up to 100ft. While in Shiekhupura, Motorway to Muridkey road is dense with varied nature of industries. The waste water generated from these industries contain various hazardous chemicals, including heavy metals and oils which have reported to contaminate the groundwater in this area. The same problem is persistent in Kasur District, where more than 300,000 Cft of heavily polluted waste water is being discharged. Dumping of this water without proper treatment, has resulted in contamination ground water of Kasur to poisonous level.

In general, the groundwater quality is good near the River Ravi and canals and gradually deteriorates in the south and south-western direction. Many studies have found higher arsenic levels (>50 parts per billion) in pumped groundwater in Lahore. The quality of shallow groundwater is generally considered poor as these tube wells are adversely effected.

1.5.2. Groundwater Challenges:

Lack of coordination between inter-departments has been one of the major bottlenecks in successful and effective implementation of various management strategies. Data between WASA, Department of Punjab Irrigation, WAPDA and
PCRWR is not shared timely and efficiently to allow adaptation of mitigation measures before the problems transform into crisis.

The shallow aquifer of Lahore city has become highly polluted due to intrusion of sewage water and the contamination level of faecal E. coli has crossed the recommended limits of WHO (Ahmad et al., 2012). The deep aquifer is still safe from sewage water intrusion. Lahore canal is also polluted and recharges contaminated water into the shallow aquifer.

The difference between recharge and discharge is 23,660,826.7 Cft/day, which is equivalent to a 21.6inch (0.55m) per year drop in aquifer levels.

Extensive groundwater withdrawal has formed a groundwater depression zone in the central part of the city where the water table has dropped below 130ft. Continuous groundwater pumping from this depression zone is likely to induce a negative groundwater hydraulic gradient, which can accelerate the intrusion of saline groundwater from neighbouring Raiwind and Pattoki areas where groundwater is saline. This would be disastrous for local communities and industries as there is no quick and simple way available to clean the polluted aquifer. The groundwater contours as published by Department of Irrigation, Punjab are given in Annex – A.

In 1960, the groundwater table depth was 15ft. The extensive use of groundwater has led to the lowering of the water table by about half a metre per year during the last 30 years. In 1987, the depth of the water table ranged from 25 to 65ft, which has lowered to 165ft in 2011 (Khalid et al., 2013). The increasing depth of the groundwater table in different parts of Lahore is replete with serious consequences.

1.5.3. Conservation of Groundwater:

As discussed earlier, the groundwater table of Lahore Division is depleting with alarming rate, which desperately calls for regulations to monitor and control groundwater extraction. Currently, no regulation exists in any of the districts, with respect to installation of boreholes and the amount of water extracted by any individual, or even community and industry. In the absence of any municipal water act or water-right law, groundwater is pumped indiscriminately by private housing schemes and industry. Private housing societies pump more than 13,000,000 Cft/day to supply
water to their residents. In areas where the water supply network is not available, estimated extraction is more than 12,400,000 Cft/day. Therefore, the total groundwater extracted by private housing schemes is more than 25,400,000. In the absence of any municipal water act or water-right law, groundwater is pumped indiscriminately by private housing schemes and industry. Private housing societies pump 13066426.7 Cft/day to supply water to their residents. In areas where the water supply network is not available, estimated extraction is 12360133 Cft/day. Therefore, the total groundwater extracted by private housing schemes is approximately 25073414 Cft/day. Increase in urbanization and industrialization will place an extra pressure on the ground water resources that is already depreciating. The water extraction should be controlled and only permitted for certain uses that would place a vital pressure on the water system or cannot be accommodated such as high water demand industries.

Groundwater quality monitoring carried out by WASA (2011) shows that most of the parameters (except arsenic) are within acceptable limits of WHO. The highly arsenic contaminated groundwater (up to 2,400 ppb) is found in shallow water table depths of up to 30m (Farooqi et al., 2007). The main anthropogenic source of arsenic is air pollutants derived from kiln factories, with fertilizers a possible secondary source. Minor amounts of sulphate (SO4) are also derived from air pollutants and fertilizers. Household wastewater also contains SO4 but not arsenic.

To protect quantity and quality of groundwater resources, the following suggestions may be helpful:

i. Water conservation should be educated at household level.
ii. For long-term sustainability of drinking water supplies, the possibility of supplementing groundwater supplies with surface water supplies should be explored, wherever possible.
iii. Water harvesting at the household level and the local level should be promoted to maximize benefits of storm water and free up domestic water supply sources. This option will also reduce magnitude of urban storm.
iv. Quota of groundwater extraction for new housing societies should be fixed based on specified per capita demand.
v. Define groundwater protection zones according to the safe yield of the aquifer. In Lahore, for example, central parts of the city where a groundwater depression zone is being developed should be defined as a “groundwater protection zone” and pumping should be regulated.

vi. In order to promote the culture of water conservation, a metering system should be introduced to charge water on a volumetric basis. This will help in reducing water use, in the same way as is being done for electricity, gas and other utilities.

vii. WASA, LDA and EPA should enforce environmental laws to restrict industries not to dispose of their waste in drains, canals or other water bodies without treatment.

viii. Maximize the use of treated wastewater for irrigation purposes.

ix. Water should be treated as an economic good and its exploitation rights be given through a proper permit system and compatible prices especially to the industrial sector.

x. For long-term sustainability of drinking water supplies, the possibility of supplementing groundwater supplies with surface water supplies should be explored, wherever possible. For Lahore, provision of surface water supply from the River Ravi or BRBD canal system may be considered after addressing quality concerns.

1.5.4. **Ground Water Recharge:**

The average annual rainfall of Lahore District is 715 mm. However, its recharge to groundwater in urban areas is minimal due to urbanization. In general, groundwater discharge is higher than recharge, which is the main reason for the rapid depletion of groundwater in the urban areas. The situation is likely to get worse with increase in urban development. In agricultural areas, the rain water infiltrating in ground is allowing percolation of harmful soluble chemicals used in irrigation, in the form of pesticides and insecticides.

A sound mechanism is required to recharge the depleting groundwater with safe and clean surface water.
1.6. Discussion on Each Site:

1.6.1. Allah Abad
Location: 74° 3' 19.982" E, 30° 52' 31.997" N
Nearest Surface Water: Gehlan Branch Canal
Groundwater Quality: Unfit to be used directly for water supply
Flood Hazard: safe from flood hazards of 100 years return period in Sutlej River.

1.6.2. Bhai Pheru
Location: 73° 59' 49.223" E, 31° 15' 30.033" N
Nearest Surface Water: Ravi River and Lahore Brach Canal
Groundwater Quality: The groundwater quality of Bhai Pheru is unfit to be used directly for water supply. The seepage of polluted water from Ravi River have contaminated groundwater quality of Bhai Peru, making it unfit for direct water supply.
Flood Hazard: Bhai Pheru is located at a distance of around 4km from Ravi River, which makes it susceptible to floods.

1.6.3. Bhikhi
Location: 73° 54' 39.810" E, 31° 37' 29.446" N
Nearest Surface Water: Qadirabad-balloki Link Canal
Groundwater Quality: Fit for drinking with minor treatment
Flood Hazard: No flood hazard below flood 1000 years return period in any river.

1.6.4. Bucheki
Location: 73° 39' 45.712" E, 31° 18' 35.372" N
Nearest Surface Water: Ravi River
Groundwater Quality: fit for drinking with minor treatment
Flood Hazard: Bucheki is protected by the elevated road of Syedwala – Baraghar – Bucheki Road from flood hazards. Any part of Bucheki settlement, on south of Syedwala – Baraghar – Bucheki Road can be subjected to flooding hazards from Ravi River.

1.6.5. Changa Manga

Location: 73° 57’ 43.261” E, 31° 5’ 20.576” N

Nearest Surface Water: Balloki Sulemanki Link Canal

Groundwater Quality: Unfit for drinking

Flood Hazard: No flood hazard below flood 1000 years return period in any river.

1.6.6. Chunian

Location: 73° 58’ 30.602” E, 30° 57’ 52.576” N

Nearest Surface Water: Balloki Sulemanki Link Canal.

The old bed of Bias River also passes from Chunian

Groundwater Quality: Unfit for drinking

Flood Hazard: No flood hazard below flood 1000 years return period in any river.

1.6.7. Farooqabad

Location: 73° 49’ 44.179” E, 31° 44’ 49.660” N

Nearest Surface Water: Qadirabad-Balloki Link Canal

Groundwater Quality: unfit for drinking

Flood Hazard: No flood hazard below flood 1000 years return period in any river.

1.6.8. Feroz Wattwan

Location: 73° 48’ 47.774” E, 31° 35’ 26.947” N

Nearest Surface Water: Lower Chenab Canal on west and Qadirabad-Balloki Link Canal on east
Groundwater Quality: Fit for drinking with minor treatment

Flood Hazard: No flood hazard below flood 1000 years return period in any river.

1.6.9. **Ferozpur Road & BRB Canal**
Location: 74° 25’ 50.769” E, 31° 23’ 38.889” N

Nearest Surface Water: BRB Canal on east and Lower Chenab Canal on west

Groundwater Quality: Unfit for drinking

Flood Hazard: No flood hazard below flood 1000 years return period in any river.

1.6.10. **Ferozwala**
Location: 74° 9’ 24.584” E, 31° 39’ 37.519” N

Nearest Surface Water: Deg Nallah on west and minor canal on east

Flood Hazard: under potential threat of flooding due to Deg Nallah.

1.6.11. **Industrial Estate**
Location: 74° 26’ 0.523” E, 31° 11’ 37.770” N

Nearest Surface Water: Athilpur Minor Canal

Groundwater Quality: extremely poor and requires high level of cleaning before it can be supplied for drinking

Flood Hazard: No flood hazard below flood 1000 years return period in any river.

1.6.12. **Jamber**
Location: 73° 55’ 1.814” E, 31° 8’ 36.791” N

Nearest Surface Water: Balloki – Sulemanki Link Canal

Groundwater Quality: Unfit for drinking

Flood Hazard: No flood hazard below flood 1000 years return period in any river.
1.6.13. **Jandiala Sher Khan**

Location: 73° 55' 14.085" E, 31° 49' 17.953" N

Nearest Surface Water: Qadirabad-Bulloki Link Canal and Lower Chenab Canal

Groundwater Quality: fit for drinking with minor treatment

Flood Hazard: No flood hazard below flood 1000 years return period in any river.

1.6.14. **Jaranwala Road**

Location: 74° 11' 27.858" E, 31° 34' 50.842" N

Nearest Surface Water: Shahdara Distributary

Groundwater Quality: Fit for drinking with minor treatment

Flood Hazard: Safe from flooding hazards from floods of 100 years return period in Ravi River. Any higher flood can be hazardous.

1.6.15. **Jhabran**

Location: 73° 51' 47.563" E, 31° 51' 38.556" N

Nearest Surface Water: Qadirabad-Bulloki Link Canal and Lower Chenab Canal

Groundwater Quality: Unfit for drinking.

Flood Hazard: No flood hazard below flood 1000 years return period in any river.

1.6.16. **Kanganpur**

Location: 74° 7' 25.467" E, 30° 45' 50.234" N

Nearest Surface Water: kanganpur Minor Canal

Groundwater Quality: fit to be used as drinking water, with minor treatment.

Flood Hazard: Sutlej River is located 6Km east of Kanganpur. The Kanganpur Settlement is safe from 100 year flood in Sutlej River due to presence of BRB Canal Road.
1.6.17. **Kasur**

Location: 74° 26’ 52.353” E, 31° 7’ 23.277” N

Nearest Surface Water: BRB Canal

Groundwater Quality: highly polluted due to dumping of untreated or semi-treated water from tanneries.

Flood Hazard: Safe from floods of 1000 years return period.

1.6.18. **Khanqah Dogran**

Location: 73° 37’ 23.398” E, 31° 49’ 53.340” N

Nearest Surface Water: Lower Chenab Canal, Qadirabad-Bulloki Link Canal and Jhung Branch Canal.

Groundwater Quality: unfit for direct supply as drinking water.

Flood Hazard: No flood hazard below flood of 1000 years return period in any river.

1.6.19. **Khuddian Khas**

Nearest Surface Water: Jora Branch Canal

Groundwater Quality: Fit for drinking with minor treatment

Flood Hazard: No flood hazard below flood 1000 years return period in any river.

1.6.20. **Kot Radha Kishan**

Location: 74° 5’ 50.437” E, 31° 10’ 4.407” N

Nearest Surface Water: Turkwind Distributary Canal

Groundwater Quality: Unfit for direct water supply

Flood Hazard: No flood hazard below flood 1000 years return period in any river.

1.6.21. **Lahore Muridke Road**

Location: 74° 16’ 50.492” E, 31° 39’ 14.030” N

Nearest Surface Water: Shahdara Distributary Canal and Bhed Nalla
Groundwater Quality: Fit for drinking with minor treatment

Flood Hazard: No flood hazard below 100 years return period. Flood of higher magnitude in Ravi River can cause flooding in this settlement.

1.6.22. **Lahore Sheikhpura Road**
Location: 74° 13' 50.662" E, 31° 37' 48.749" N

Nearest Surface Water: Bhed nalla

Groundwater Quality: Fit for drinking with minor treatment

Flood Hazard: Potential threat from No flood hazard below 100 years return period. Flood of higher magnitude in Ravi River can cause flooding in this settlement.

1.6.23. **Mananwala**
Location: 73° 41' 42.837" E, 31° 35' 18.236" N

Nearest Surface Water: Lower Chenab Canal

Groundwater Quality: Fit for drinking with minor treatment

Flood Hazard: No flood hazard below flood 1000 years return period in any river.

1.6.24. **Mandi Faizabad**
Location: 73° 59' 5.583" E, 31° 24' 54.453" N

Nearest Surface Water: Qadirabad-Bulloki Link Canal and Ravi River

Groundwater Quality: Unfit for drinking. Proper treatment is required to be used as drinking water.

Flood Hazard: The settlement is present in north and south of Jaranwala Road. Northern part is safe from flood hazards from Ravi River below flood of 100 years return period. Northern part, however, have no protection against floods and even a moderate flood in Ravi River can cause flooding hazard.

1.6.25. **Mor Khunda**
Location: 73° 47' 33.363" E, 31° 19' 11.977" N
Nearest Surface Water: Minor Canal

Groundwater Quality: Fit for drinking with minor treatment

Flood Hazard: The settlement is present in north and south of Jaranwala Road. Northern part is safe from flood hazards from Ravi River below flood of 100 years return period. Northern part, however, have no protection against floods and even a moderate flood in Ravi River can cause flooding hazard.

1.6.26. Muridke
Location: 74° 15’ 16.546” E 31° 48’ 34.800” N

Nearest Surface Water: Muridke Distributary

Groundwater Quality: Fit for drinking with minor treatment

Flood Hazard: Muridke settlement lies between Deg Nallah and Nikki Deg Drain, both of which spread out water during flood season.

1.6.27. Mustafa Abad
Location: 74° 24’ 43.942” E 31° 14’ 48.821” N

Nearest Surface Water: Bedian Distributary Canal

Groundwater Quality: Unfit for drinking. Proper treatment is required to be used as drinking water.

Flood Hazard: No flood hazard below flood 1000 years return period.

1.6.28. Nankana Sab
Location: 73° 42’ 29.750” E 31° 27’ 4.672” N

Nearest Surface Water: Lower Chenab Canal

Groundwater Quality: Fit for drinking with minor treatment

Flood Hazard: No flood hazard below flood 1000 years return period in any river.
1.6.29. Narang Mandi
Location: 74° 30' 25.749" E 31° 54' 32.110" N

Nearest Surface Water: BRB Canal

Groundwater Quality: Fit for drinking with minor treatment

Flood Hazard: Higher level of BRB Canal provides safety against floods in Ravi River upto a flood of 100 years return period.

1.6.30. Pattoki
Location: 73° 51' 13.334" E 31° 1' 32.710" N

Nearest Surface Water: Wan Distributary Canal

Groundwater Quality: Unfit for drinking. Proper treatment is required to be used as drinking water.

Flood Hazard: None

1.6.31. Raiwind & Multan Road
Location: 74° 11' 43.234" E 31° 18' 11.348" N

Nearest Surface Water: Bedian Distributary and Lahore Branch Canal

Groundwater Quality: Unfit for drinking. Proper treatment is required to be used as drinking water.

Flood Hazard: No flood hazard below flood 1000 years return period in any river.

1.6.32. Raja Jang
Location: 74° 15' 23.669" E 31° 13' 16.020" N

Nearest Surface Water: Bedian Distributary

Groundwater Quality: Unfit for drinking. Proper treatment is required to be used as drinking water.

Flood Hazard: No flood hazard below flood 1000 years return period in any river.
1.6.33. **Rao Khan Wala**
Location: 74° 19' 36.990" E 31° 11' 30.907" N

Nearest Surface Water: Bedian Distributary

Groundwater Quality: Unfit for drinking. Proper treatment is required to be used as drinking water.

Flood Hazard: No flood hazard below flood 1000 years return period in any river.

1.6.34. **Safdarabad**
Location: 73° 34' 40.600" E 31° 43' 45.786" N

Nearest Surface Water: Lower Chenab Canal, Qadirabad Balloki Link Canal and Jhang Branch Canal

Groundwater Quality: Fit for drinking with minor treatment

Flood Hazard: No flood hazard below flood 1000 years return period in any river.

1.6.35. **Sangla Hil**
Location: 73° 22' 53.522" E 31° 42' 46.769" N

Nearest Surface Water: Jhang Branch Canal

Groundwater Quality: Unfit for drinking. Proper treatment is required to be used as drinking water.

Flood Hazard: Higher elevation level of Faisalabad Motorway provides safety against floods in Chenab River, upto a flood of 100 years return period.

1.6.36. **Shahkot-I**
Location: 73° 28' 56.193" E 31° 34' 27.873" N

Nearest Surface Water: Lower Chenab Canal

Groundwater Quality: Unfit for drinking. Proper treatment is required to be used as drinking water.

Flood Hazard: No flood hazard below flood 1000 years return period in any river.
1.6.37. **Shahkot-II**
Location: 73° 32' 33.676" E 31° 35' 8.292" N

Nearest Surface Water: Lower Chenab Canal

Groundwater Quality: Unfit for drinking. Proper treatment is required to be used as drinking water.

Flood Hazard: No flood hazard below flood 1000 years return period in any river.

1.6.38. **Sharqpur**
Location: 74° 6' 8.626" E 31° 27' 51.170" N

Nearest Surface Water: Upper Chenab Canal and Ravi River

Groundwater Quality: Unfit for drinking. Proper treatment is required to be used as drinking water.

Flood Hazard: After the flood of 1988, a protective bund was constructed to save Sharaqpur from future floods. The bund height is sufficient to save Sharaqpur Settlement from flood of 100 years return period in Ravi River.

1.6.39. **Sheikhupura**
Location: 73° 59' 20.204" E 31° 42' 46.845" N

Nearest Surface Water: Upper Chenab Canal, Qadirabad-Bulloki Link Canal and Lower Chenab Canal

Groundwater Quality: Unfit for drinking. Proper treatment is required to be used as drinking water.

Flood Hazard: No flood hazard below flood 1000 years return period in any river.

1.6.40. **Syed Wala**
Location: 73° 29' 55.585" E 31° 8' 31.918" N

Nearest Surface Water: Ravi River
Groundwater Quality: Unfit for drinking. Proper treatment is required to be used as drinking water.

Flood Hazard: Can be subjected to floods in case of flooding in Ravi River.

1.6.41. Talwandi

Location: 74° 8' 11.980" E 30° 54’ 26.708” N

Nearest Surface Water: BRB Canal

Groundwater Quality: Fit for drinking with minor treatment

Flood Hazard: The higher level of BRB Canal provides safety against floods of 100 years return period in Sutlej River.

1.6.42. Warburton

Location: 73° 49’ 45.203” E 31° 32’ 23.270” N

Nearest Surface Water: Qadirabad Balloki Link Canal and Lower Chenab Canal

Groundwater Quality: Unfit for drinking. Proper treatment is required to be used as drinking water.

Flood Hazard: No flood hazard below flood 1000 years return period in any river.

1.7. Floods

According to the PDMA- DRP, the River Ravi belongs to the category B flooding (medium Level Flood). Two categories of flood can occur in the planned area i.e. urban and riverine. Flood is considered as most drastic and re-occurring hazards in Pakistan. Roughly 1.84 million people across Pakistan have been affected by floods triggered by heavy monsoon rains. At least 346 people have been killed and 620 others have been injured in flood-related incidents, according to the latest figures released by the National Disaster Management Authority (NDMA).

The most recent flood was occurred in current year of 2014 and considered as one of the biggest flood in the history of Pakistan. According to the National Disaster Management Authority (NDMA) almost 312 people have died, with 2,275,000
affected and nearly 1.7 million acres (687,965 hectares) of crops lost due to this recent flood. The most affected were in Punjab Province and declared a state of emergency. The situation of rivers during this recent flood is given in Figure 8 as under:-

![Map of Pakistan with flood information](image)

Figure 8 Flood in Rivers of Pakistan-2014, NDMA

As discussed in section 1.3.1.1 and section 1.3.1.2, the planned areas are generally safe from moderate floods. However, safety measures have to be taken against heavy flooding if flash discharge is released from Indian dams after heavy rainfall.

The recent flood noted in River Ravi is at Shahdara Gauging Station is 250,000 cusecs and considered as medium flood level. This is the highest flood level noted in River Ravi after year 2000 as construction of Thein Dam on Indian side greatly reduces the flows in River Ravi while the highest flood that observed in River Ravi is in 1988 which was around 586,000 cusecs. Further detailed hydrological study is required to calculate magnitude of future flood risk and resulting area inundation, especially after construction of Thein Dam and Shahpur Kundi Dam in India.
Due to unusual event, if flood exceeds the level of 5,86,000 cusecs then following mitigations will be adopted:-

- Flood Warning Centre would analyze situation before 1 or 2 days in accordance with the travelling time of flood with coordinating Pak-Metrological Department, Irrigation Department, WAPDA, Indus water commission and Police telecommunication (Head works and barrages) and accordingly flood warning should announce and information should sent to PDMA and related agencies.

 Figure 9 Flood Early Warning Centre (Source- DRP-2013)

- When flood warning should announce PDMA would implement state of emergency in the area and evacuation would be done in accordance with DPRP.
- DDMA, TDMA and DRC will do their responsibilities in accordance with DPRP
• The peoples would ask to move at safer place and accordingly temporary camps should be provided.

• Rescue and Emergency activities in accordance with DPRP should start soon after the flood hits the area. The objective of Rescue and Emergency activities is to save life of each and every individual who not been moved to safer place rather than property or valuables.

• Temporary hospitals should be made at camp area. Ensure the supply of food and portable water in the camps.

The following options should be considered to minimize flooding in settlements:

i. Existing drains should be restored into original shape by desilting and removal of all encroachments, to allow passage of more flow of water before overflowing.

ii. The settlements of Bucheki, Mor Khunda and Mandi Faizabad may be considered to be expanded only in north of Jaranwala Road. In case of extension towards south, protection bund will be mandatory to avoid flood water to enter the settlement.

iii. Water of Deg Nallah can be partially diverted into Basanter Nallah in flood season.

iv. Tree plantation around Ravi River, specially upstream of Lahore should be encouraged, which will reduce risk of flooding to great extent.

1.8. Conclusion

Lahore is in constant danger of health and environmental risks and ecosystem challenges due to huge discharges of untreated domestic and industrial waste. The River Ravi is considered as the most polluted river among the main rivers in Punjab. Recent water quality monitoring has shown the presence of faecal coliforms in drinking water. Presence of toxic heavy metals in irrigation water, especially downstream of the River Ravi, is also causing serious damage to animal life in surrounding areas. A direct economic impact of untreated wastewater is the loss of fishery catches, which affects incomes and has nutritional and health impacts on
consumers. The use of contaminated surface water from Ravi for irrigation and recreational purposes is also replete with serious consequences as this will have a direct impact on the ecosystem and human health. In peri-urban areas of Lahore farmers are using untreated sewage/industrial water for vegetable production and water-related diseases such as typhoid, cholera, dysentery and hepatitis are very common. Evidence also shows that, in Lahore, vegetables and fruits grown with wastewater are also prone to heavy metal contamination.

Seepage from rivers, lined or unlined channels, rainfall and agricultural fields is vital to recharge groundwater, which is the major source of drinking water for most cities including Lahore. The exact estimation of recharge to groundwater from these water bodies is a complex procedure and not much has been done on this subject in Pakistan. Recharge to groundwater in urban areas is relatively insignificant due to large scale infrastructure development without any provisions for groundwater recharge zones.

The annual rainfall in Lahore is reasonable enough to recharge the groundwater aquifer. However, the existing landscape does not allow any recharge to groundwater in urban areas of Lahore and most rainwater is lost to drains due to fast runoff. By creating favourable conditions, about one-fourth of the average annual rainfall (178 mm) can be recharged to groundwater.

The substantial contribution of the River Ravi in recharging the Lahore aquifer suggests that we should stop discharging untreated wastewater into the river as it can have serious consequences for millions of people in and around the city that rely on groundwater as their principal source of drinking water.

Pakistan needs to prepare itself for the possibility of future changes in climate. Current water management practices may not be robust enough to cope with the impacts of climate change on water supply reliability, flood risk, health, agriculture, energy and aquatic ecosystems. Therefore, improving water management is the best strategy to cope with projected climate changes and their impact on the agricultural economy, water supply to cities and the environment.
Appendix-IV

Framework/ Guidelines for Strategic Environmental Assessment (SEA)
(A Guidance Document) for Master Planning of Lahore Division

Document developed by:
M.Mansoor Khan (EIA and SEA practitioner)
This document contains information to be used for guidance purpose only in the subject of SEA and EIA and necessary uptake of other related studies. No liability shall be admissible to the writer, developer of this report for any mistake incurred, overlooked or copied herewith. The writer/author also does not bear any liability of whole or any part of this document copied, used, misused, edited or presented to any other party, document, audience etc.
Contents

Section One: Understanding the SEA
 Background of SEA 1
 Defining SEA 2
 Importance & Objectives 3
 SEA Performance Criteria 4
 Key Stakeholders in SEA 4
 Relating EIA and SEA 5

Section Two: Conducting SEA
 Step One: Developing the context
 Creating Baseline 7
 Identification of Strategic Issues (SI) 7
 Setting the targets 8
 Identification of decision makers 9
 Identification of stakeholders 10
 Step Two: Developing the strategy
 Selecting the analytical methods 11
 Integrating SEA in decision making 22
 Conclusion of the Guidance document 24
Abbreviations used

CSIR: Council of Scientific & Industrial Research
CDF: Critical Factors for Decision Making
EIA: Environmental Impact Assessment
ESF: Environment Sustainability Factors
IAIA: International Association for Impact Assessment
IUCN: International Union for Conservation of Nature
IWRMD: Integrated Water Resources Management and Development
MCA: Multi Criteria Analysis
NGO: Non-Governmental Organization
OECD: Organization for Economic Cooperation and Development
SEA: Strategic Environmental Assessment
SI: Strategic Issues
SD: Sustainable Development
SEP: Stakeholder Engagement Plan
SWOT: Strength, Weakness, Opportunities and Threats
UNEP: United Nations Environment Programme
WB: World Bank
Preamble

This guidance document focuses on the Strategic Environment Assessment. As SEA is not mandatory in Pakistan, but taking this an opportunity, this guidance document is carved out considering the practices done so far specially in Portugal and Vietnam in order to motivate environmental practitioners, organizations, institutions and decision makers to look into environmental matters in a broad spectrum i.e; planning level.

Strategic Assessments have been undertaken in Pakistan for few developments including two pilot SEAs (one for Gilgit City Master Plan and the other for Hydropower Sector Planning of AJ&K) and legislated in some provinces of Pakistan as an outcome of efforts made under National Impact Assessment Programme. Being part of this programme and SEA initiatives performed, know-how of SEA is well-understood and it is privilege being considered to develop a guidance document for Master Planning of Lahore Division of this newly introduced concept in the world. Since, SEA has no hard and fast rules so far, hence, it is quite a flexible methodology in terms of selection and application.

This document would present an understanding of the subject, core aspects, future propositions for this Master Planning and will provide a platform to the experts for further studies and decision making.

Special credits are paid to the institutions/organizations (IAIA, OECD, CSIR, WB, ADB, SMEC, IUCN, gtz, Ramboll, Swiss Agency for Development and Cooperation, etc etc), Maria Rosário Partidário and all others whose inputs/publications in this subject (SEA) have been quoted in this document.
Section One: Understanding the SEA

Background of SEA

This part of the section would narrate the background of origination of SEA. Different scientists/researchers/institution narrated understanding of SEA in their own way, as and when they have quoted. Thus, this part should not be assumed as a benchmark for concluding the results, rather it must be considered as a pathway of developing an understanding of the background.

In 1989 SEA was introduced as a concept, and a term, in the context of a European research project as “the environmental assessments appropriate to policies, plans and programs of a more strategic nature than those applicable to individual projects likely to differ from them in several important respects” (Wood and Djeddour, 1989)

(Ref: Strategic Environmental Assessment Better Practice Guide- methodological guidance for strategic thinking in SEA by Maria Rosário Partidário)

During the last decade the world has witnessed a rapid, though controversial, evolution of the environmental policy agenda. Increasingly, traditional environmental decision-making is being questioned, not because it has not developed sufficient legal mechanisms or methodological tools, or because it did not seek to find solutions for critical environmental degradation, but essentially because it is not efficiently responding to the new challenges of the late 20th century, as confirmed and proclaimed by the United Nations Conference on Environment and Development in 1992. In particular, it is not fully achieving the initially expected results regarding environmental soundness and integration with economic and social issues.

Despite this apparently negative trend, much effort is dedicated to improving environmental performances, to increasing environmental awareness across development sectors, in public, governmental, or private decision-making, in inviting and guiding change in decisional attitudes and its supporting values. Significant environmental policy evolution is occurring not only in the developed world but also in the developing and transitional economies.

Strategic Environmental Assessment (SEA) has been emerging in this context. May be not surprisingly, there is an increasing complexity behind and around current development and decision-making processes derived from the explosion of electronic communications, the speediness of information production and outdateness, the emerging societal values of equity and fairness, the urgency of rational decisions supported by scarce or defective information and conflictual priorities, all development vectors that call for new forms of proactive intervention in more strategic contexts.
Project’ Environmental Impact Assessment (EIA), as currently practiced, has been unable to respond to this increasing complexity and provide for global, sustainable and sound decision-making. Such desilusion with the capacity of project’ EIA to assist, as a single tool, sound environmental decision-making in a tiering system was the strongest argument that determined the need for SEA in its early days (Lee and Walsh, 1992; Therivel et al., 1992; Wood and Djeddour, 1992; Sadler and Verheem, 1996). The reasons are various and can be summarized as (Partidário, 1999):

- the timing of decisions: project’s EIA takes place at a stage when it is too late to consider the effects of policy and planning critical decisions; these happen in the absence of a systematic impact assessment process, which outcome could subsequently influence project planning and design;

- the nature of decisions: the less concrete and more vague nature of policy and planning decisions, often its incremental nature, through small, sequential and iterative decisions that challenge rational and systematic processes was seen as a significant constraint to the operation of a pragmatic, technically focused, and rationally oriented tool such as EIA; a new impact assessment tool, inherently adaptable to more strategic, and often incremental, levels of decision-making, was therefore needed;

- the level of information: at the policy and planning level often there are serious limitations in the availability of information, and a reasonable uncertainty regarding action implementation and respective timings; this impeded the satisfaction of project EIA needs, in terms of required detailed levels of information and certainty.

(Ref: IAIA Training Course, “SEA current practices, future demands and capacity building needs” by Maria Rosário Partidário)

Defining SEA

Strategic Environmental Assessments (SEAs) have been developed by the environment community as “instruments to bring environmental concerns into the strategic levels of decision making – policies, legislation, strategies, plans, and programs (PLSPP)”. SEAs were developed to tackle concerns that Environmental Impact Assessments (EIAs) were not fully effective because many of the environmental issues resulted from earlier, strategic decisions.

SEAs have been used for a variety of purposes, including developing a shared understanding of environmental issues, building a consensus on the way to tackle these issues, identifying issues to be tackled in depth in project-level EIAs, developing investment plans, in national, regional and transboundary settings. Essentially SEAs
allow decision makers to take advantage of environmental and social opportunities while managing environmental and social risks in a strategic setting.

(Ref: “SEA and IWRMD” World Bank, 2007)

Thus, SEAs are considered as Instrument (process) that assists and facilitates decision-making, acts at strategic levels of decision-making and focuses on few relevant issues for decision making. (conceived from Partidário 2007)

Importance & Objectives

There are several reasons why SEA is important (based on Partidario, 1999; CSIR, 2000; IAIA, 2002):

1. Promotes and helps to understand sustainability challenges, incorporating an integrated perspective earlier in policy-making and planning processes;

2. Supports strategic decision-making, setting enabling development conditions;

3. Facilitates identification and discussion of development options and provides guidelines to help development to follow sustainability trajectories;

4. Informs planners, decision makers and affected public on the sustainability of strategic decisions, ensuring a democratic decision making process, enhancing the credibility of decisions;

5. Encourages political willingness, stimulates changes to mentalities and create a culture of strategic decision-making.

In its understanding as a strategic thinking model, SEA applies to the strategic component of decision-making processes in (i) public policies, (ii) sectorial development plans and programmes, (iii) territorial development plans and programmes (iv) and also to major structural investment projects that have long-term strategic objectives (such as new international airports, new forms of energy production (ethanol, wind-based, water-based) in relation to their strategic concept).

SEA has been widely promoted by international development agencies (World Bank, 2011; UNEP, 2009; OECD, 2006). However more than the assessment of development proposals, SEA is an important instrument to help face development challenges generated by:

a) Adaptation and mitigation to climate changes;

b) Poverty eradication and overcome of social and regional inequalities;
c) Enhancement and maintenance of biodiversity values, ecosystem services and human well-being;

d) Social and territorial cohesion;

e) Promotion of regional development potential;

f) Innovation and cultural diversity of the population;

g) Promotion of environmental quality, landscape and cultural heritage and sustainable use of natural resources.

(Ref: Strategic Environmental Assessment Better Practice Guide- methodological guidance for strategic thinking in SEA by *Maria Rosário Partidário*)

SEA Performance Criteria

IAIA narrates that an SEA must be:

- Integrated
- Sustainability-led
- Focused
- Accountable
- Participative
- Iterative

(Ref: IAIA 2002)

Key stakeholders in SEA

Key stakeholders in SEA are usually institutions (not individuals) because the institutions have the authority and capacity to execute or in case implement the SEA.

Key authorities:

- Agencies assigned to formulate Policy, Plan or Programme
- Authorities that are responsible for approval of the Policy, Plan or Programme
• Authorities responsible for establishing SEA review councils (in some countries)
• Authorities responsible for implementation of Policy, Plan or Programme

Other authorities usually consulted:

• other authorities with environmental mandates (EPAs etc.)
• relevant authorities with social mandate
• relevant authorities with economic mandate
• relevant ministries & ministerial level agencies

Other stakeholders in SEA

High-level or general Policy, Plan or Programme could raise interest of:

• Academic organizations
• Professional associations
• Business groups
• NGOs

Local or detailed Policy, Plan or Programme could raise interest of:

• Local NGOs
• Institutions that represent interests of affected citizens (e.g. social welfare organizations, any committee/union of minorities etc)

Relating EIA and SEA

• SEAs may broadly follow basic analytical steps in EIA but have much larger boundaries in terms of time, space and subject coverage
• SEAs should provide an overview of trends without the Policy, Plan or Programme and with the Policy, Plan or Programme
• SEAs can recommend (i) changes within the proposed Policy, Plan or Programme, (ii) improvements in coordination between relevant agencies, or (iii) new cross-sectoral interventions
• SEAs can also provide suggestions for EIAs of future projects and improve their quality
Following table below represents in a very brief way the major differences between an EIA and SEA.

<table>
<thead>
<tr>
<th>Features</th>
<th>EIA</th>
<th>SEA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Considered alternatives</td>
<td>Locations and technologies</td>
<td>Development directions (objectives and scenarios) and multiple actions to achieve them</td>
</tr>
</tbody>
</table>
| Impacts | Specific impacts on the local state of environment – compared with local env. quality | Long-term trends (often related to env/SD objectives) – comparison against env./SD objectives
Specific impacts often assessed only if Policy, Plan or Programme contains specific project proposals |
| Assessment | More quantitative | More qualitative (expert judgements) |
| Public concerned | Affected public and organized groups | Mainly organized “publics” – interest groups, think-tanks |
| Quality review | Quality of EIA report and process management | Quality of assessments and sound process + due account of SEA in the Policy, Plan or Programme |
Section Two: Conducting SEA for Master Plan of Lahore

Step One: Developing the context

The first step of developing an SEA for the said master planning of Lahore would be to develop the context. Following key indicators would help to draw a framework for onward conducting an SEA and facilitating the decision-making process viable and sustainable.

Creating Baseline

The desk studies must be done prior initializing the SEA process. Collecting enviro-social baselines, organizing them, review already present literature of the project area and project influence area. The baseline must be developed considering all inter-linked factors that may cause hindrance in further process.

A review and analysis of all prevalent polices, laws and regulations must be carried out in order to understand the prevalent legal and administrative structure. Focus can specially be given to the related polices, laws, regulations etc which are directly or indirectly linked to this development.

Identification of the loop holes, conflict of interest, gaps, or any other matter that can alter or create hurdle in the development or the suggested outputs and decisions must be pointed out and suggestions must be given as how to tackle those legal/legislative areas.

Identification of Strategic Issues (SI)

Identifying the key concerns/strategic issues is next step of an SEA. The fate of an SEA relies upon identification of these issues. In other words, it can be called as “scoping” of SEA. It needs to be assessed that what are the basic concerns/issues that are or can be resulted in case of pursuing a certain project, plan or programme. Such as, in case of “Master Planning of Lahore” the key strategic issues that need to be tackled/dealt with can be broadly classified as social, environmental and economic.

This is the stage of an SEA which would identify as well as prioritize the needs that must be addressed at the strategic level. Developing a master plan involving much districts of Lahore would raise certain environmental and social impacts which must be prioritized according to the sensitivity, nature and size. An example of the proposed strategic issues is presented below, which is only for a general understanding which can be changed/modified while conducting an SEA for this initiative:
1) Environmental resources (ground water, surface water, air quality, forest cover, climate change etc)
2) Social resources (population, traffic, employment, businesses, etc)
3) Any Other…….(Administration, institutions, inter-departmental coordination etc)

Identification of key strategic issues may or may not lead to Critical Factors for Decision Making (CFD) that might be assessed at the same time. CFD would revolve around the strategic issues (SI), environment sustainability factors (ESF) and sustainability reference framework (SRF).

- Strategic issues (SI) : Express the intended strategy in the plan, policy or programme
- Environment sustainability factors (ESF): Express the relevant environmental and sustainability scope
- SRF: basically establishes an assessment referential based on relevant major environmental, sectoral and sustainable development policy objectives.

Setting the targets

As for the master plan of Lahore, a drastic change in the infrastructure would occur in the next 30-50 years. So, setting the targets would be of utmost importance as “what to achieve in the next 30-50 years?” Decision makers should set the targets as per achievement of environmental and social sustainable targets.

For this, as an example, the motive should be, but not limited to target the aspects, such as:

- Reforms in the polices
- Reforms in the plans
- Environmental Sustainability
- Social Sustainability
- Economic Sustainability
- Etc etc……………
Identification of decision makers

The “decision makers” would bear the sole responsibility of determining, analyzing, approving and implementing the suggested policies, plans and programmes. The key decision makers could be the key departments that will also be the stakeholders to this development such as:

- Planning & Dev.
- EPA
- Board of Revenue
- Housing & Urban Dev
- C&W
- Local Govt.
- etc etc
Furthermore, it can only be possible if higher dignitaries of the government, who can actually take decisions, approve them and make reforms (if any) as per proposed recommendations/suggestions in the SEA report.

Identification of stakeholders

Identifying stakeholders is yet another step of “involving” the institutions, organizations, people or interested groups in Strategic process. In this case, the stakeholders can be, but not limited to:

- Government Departments (as listed above and others who can be directly or indirectly affected or can make input)
- Semi-Government/Autonomous bodies (Only relevant institutions)
- Private Organizations (very specific organizations who have interest, or else can be affected through amendments/initialization of the master plan)
- National and International NGOs (NGOs related to environmental and social mandate)
- Social/Community Groups (ethnic, indigenous, native and other groups or unions that can be impacted/affected either directly or indirectly)
- Etc (any other as per the scenario)

A Stakeholder Engagement Plan (SEP) is suggested that would be a part of the SEA report and included as a chapter or section.
Step Two: Developing the strategy

Depending on the background work as discussed above (identification), a strategy should be carved out/built on the same grounds as identified. Development of strategy would be based on the key Strategic Issues and Targets.

Selecting the analytical methods

- Many methods exist (e.g. short survey by Ramboll & YEPB in China identified over 20 methods that could be possibly applied in SEA)

- Their application in SEA depends on whether they:
 - Can analyze long-term trends and implications (e.g. 5-20 years ahead – depending on the type of the policy, plan or programme)
 - Are robust enough to cope with uncertainties and data gaps
 - Can be used within the time & resources available for the SEA
 - SEA methods should consider long-term trends
Most common analytical methods in SEA

Key methods:

- Collective expert judgements
- Matrices showing key risks and opportunities
- GIS or other spatial analyses
- Trend analyses, etc.

Less frequent methods:

- SWOT
- Scenarios
- Network & system diagrams
- Modeling (simulations)
- Multi-criteria analysis, etc.

Expert judgment

Expert judgment is a process for obtaining data directly from experts in response to a specific question.

Expert judgments are inevitable part of any SEA process and of each SEA methodology.

Well organised expert judgments can reflect a life-long experience and expertise of participating experts. Such judgments can be - especially in situations of significant data gaps - more precise than quantitative predictions based on incomplete data.

It does not mean ‘guessing’. The most sophisticated means of collective expert judgement is the Delphi technique.

Expert judgement should clearly explain

Assumptions on which the judgment is based (when would the risk/impact occur and what it is caused by);

Future trends and issues which should be considered when judging this risk/impact);

Character of the predicted risk/impact (e.g. probability, nature & scale; duration & reversibility)
Key affected geographic areas, ecosystems or groups

Concerns associated with the risk/impact and its relative importance when compared with the baseline situation; Magnitude of key uncertainties in this judgment.

Matrices

Matrices enable identification or presentation of:

- impacts of proposed developments on various environmental issues (matrices of impacts), or
- synergies or conflicts between proposed development and the relevant environmental objectives (matrices of conflicts or synergies).
- They visually summarize these effects in user-friendly way. As such can be used to quickly compare pros and cons of proposed development options.

A simple matrix can help to identify various effects of a single intervention. More complex matrices can show cumulative effects of numerous projects on various environmental issues or objectives.

Basic matrices can mark the existence of impacts or conflict/synergy using simple symbols (e.g. X, XX). More elaborate matrices use various characters, numerical scores, colours or even textual descriptions to outline the nature, scale, importance and duration or reversibility of each effect.

Presented information should be easy to verify - matrices thus needs to be accompanied by a text explaining the nature of specific effects.
Example of a matrix

<table>
<thead>
<tr>
<th>Strategic Environmental Objectives</th>
<th>Sub-Objectives</th>
<th>Indicators</th>
<th>Decision Making</th>
<th>Components of the Draft Strategy</th>
<th>Mitigation with strategic mitigation or impacts</th>
<th>Overall Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>To prevent and, where possible, reduce direct and indirect degradation (feeding, forestry, etc.)</td>
<td>To prevent adverse effects on the environment and natural environment (feeding, forestry, etc.)</td>
<td>Mitigation measures and countermeasures</td>
<td>Low</td>
<td>Reduced</td>
<td>Strategic mitigation or impacts</td>
<td>Low</td>
</tr>
<tr>
<td>To protect and preserve (feed, forestry, etc.)</td>
<td>To protect the environment and natural environment (feeding, forestry, etc.)</td>
<td>Mitigation measures and countermeasures</td>
<td>Low</td>
<td>Reduced</td>
<td>Strategic mitigation or impacts</td>
<td>Low</td>
</tr>
<tr>
<td>To prevent and, where possible, reduce direct and indirect degradation (feeding, forestry, etc.)</td>
<td>To prevent adverse effects on the environment and natural environment (feeding, forestry, etc.)</td>
<td>Mitigation measures and countermeasures</td>
<td>Low</td>
<td>Reduced</td>
<td>Strategic mitigation or impacts</td>
<td>Low</td>
</tr>
</tbody>
</table>

Spatial analyses: Overlay Mapping and Geographical Information Systems (GIS)

These methods illustrate the spatial distribution of relevant issues and impacts.

They are undertaken through a preparation of maps with different information which is relevant to the SEA. These maps are then laid over each other.

Spatial analyses can be based on manual elaboration of transparent maps (overlay mapping) or elaboration and processing of electronic maps (Geographical Information Systems, GIS).
Networks and system diagrams

Networks and system diagrams can be in SEA used to illustrate:

- implications of the proposed decisions on the subsequent decisions and knock-on effects on other developments (decision-trees); or

- a gradual progression from direct immediate effects to indirect or longer-term or delayed effects (effect networks).

- They do not illustrate spatial or temporal scales of impacts and can become too complex.
Models (simulations)

Models facilitate simulation of environmental impacts.

Developing a new model is generally very costly. Established and accepted models can be used if they are carefully calibrated to ensure that the simulation fits the specific features of the study area.

Modelling generally tends to be used in SEA only when other suitable models and information are available and when use of models would not be too costly.

Environmental modeling typically includes the following basic steps:

1. Define the specific issues and interactions that need to be simulated;
2. Define key assumptions and boundaries of the simulation;
3. Identify the suitable model and fine-tune it to fit the local situation and data availability;
4. Collect the basic data on the local environment (e.g. topography, wind speed & direction, flow regimes, etc.)

5. Collect the input data for the past and current situations (e.g. emission levels) and run the model to enable its verification and calibration;

6. Run the model for the different scenarios that are considered in the assessment.

Multi-criteria analysis

Multi-criteria analysis (MCA) numerically evaluates all alternative options against several criteria, and combines these separate evaluations into one overall evaluation.

It can be used to identify a single most preferred option, to rank options, or simply to distinguish acceptable and unacceptable solutions so that a limited number of options can be short-listed for a detailed appraisal.

MCA requires:

- Carefully identified assessment criteria reflecting the key environmental consequences of all proposed alternative options
- Judgments on relative importance/weights of these criteria
- Judgments on performance of each option with regard to all criteria
- MCA – if improperly used – may not facilitate consensus on very controversial decisions;
- By presenting quantitative information (aggregated scores) MCA may create a false impression of accuracy. This sometimes hides the fact that all MCAs heavily depend on a value judgment;
- MCA may be easily manipulated by those who perform it (this unlikely but the risk exists)
- It may reduces rational discussion into often meaningless debate about numbers

Trend analysis and extrapolation

Trend analysis and extrapolation helps to interpret environmental pressures and changes over time.
Trends should be analyzed over a correct temporal scale. The presentation of trends can be fairly simple, e.g. a line graph, or complex graphs correlating trends in the environment with the changes in their drivers.

It can also assist predictions of future impacts as some trends can be safely extrapolated on the assumption that the trend is going to continue in the same dynamic.

Be however careful of oversimplified extrapolation that does not consider how the trend will evolve given the different driving forces, counter-trends or once they reach a breaking point.

Example of simple trend analysis

![Graph showing trend analysis](image)

SWOT

SWOT can be used in diagnosis of the current/instantaneous situation.

It highlights the key internal issues (strength and weaknesses) and the key external issues (opportunities and threats) that should be considered in the policy, plan and programme making process or in the assessment process.

<table>
<thead>
<tr>
<th>Positive</th>
<th>Negative</th>
</tr>
</thead>
</table>

SWOT – key strengths

- reduces a large quantity into simple overview of key issues that could be considered in the policy, plan and programme making process or assessment.

- useful method for obtaining various viewpoints on the current situation and can be very well used in participatory processes.

- depends only on personal knowledge and insights of participating experts - small demand for data

- can be done as a quick exercise by single person or as a rapid appraisal process of current situation that involves a large number of stakeholders.

- ability to analyze uncertainties

- high transparency

SWOT – key weaknesses

SWOT has a tendency to oversimplify the situation.

- simple presentation of strengths and weaknesses does not explain why these strengths and weaknesses occur (their root causes) and whether there are any linkages between them.

Scenarios concept

Scenarios are acceptable descriptions on how the future may happen, based on propositions what if...???

Scenarios are not predictions of the future, they outline possible future situations that reflect present and future developments.

Scenario building
Scenario building considers the key driving forces and uncertainties that affect the future development.

It focuses on the following questions:

- What are the key driving forces?
- What are the key uncertainties?
- What is inevitable (given the driving forces)?
- What would happen (if the key uncertainties materialize)?

Use of Scenarios in environmental matters

Always include:

- a representation of the initial state of the environment and
- a description of the driving forces and changes that determine the future of the environment
- an identification of the key uncertainties that may determine a different evolution of the future
- An outline of possible future situations

Types of Scenarios

- Forecasting;
- Backcasting;
- Qualitative;
- Quantitative.

Forecasting scenarios

Start with the current situation and explore alternative future developments considering certain assumptions.
Backcasting scenarios

Start with a vision of the future (optimistic, pessimistic, neutral, wishful-thinking, etc.) and analyse the different strategies to achieve such situation.

Qualitative scenarios (storylines)

- Exclusively based in narratives.
- Easy to understand and enable the representation of the view points of the different stakeholders.
- Easier way to communicate about the future (comparatively with numerical data, tables, etc).
- Often assumptions are not explicit and do not satisfy the need for numerical information.
Quantitative scenarios (numerical models)

- Normally based on models;
- Assumptions are more explicit (through variables and equations as considered);
- More difficult to understand by non-experts;
- Numerical information may be misunderstood and take scenarios as if they were predictions;
- Normally used for specific environmental problems (e.g. Climate Changes).

Recommendation/Suggestion as per Current Project:

- Accept the fact that you will never have a precise knowledge about the future trends
- It is enough to have information on key impacts in terms of their: Probability, nature & scale
- This information will enable you to compare alternatives and to design mitigation and enhancement measures
- Select the simplest available methods which provide you with sufficiently reliable information
- Always acknowledge uncertainties in these predictions

Integrating SEA in decision making

Several aspects need to be considered when deciding on how to link SEA and the planning process. Having a separate but well-articulated coordination may be better than a totally separate or totally integrated coordination, because the interconnectedness of the SEA and planning processes is crucial for their overall success. Totally separated coordination would make such connection more difficult. Full integration may risk making SEA, or planning, dominant in relation to each other. The same happens to reporting and teams. It is important to separate functions and responsibilities, should this separation be enabled by the availability of technical and financial resources.
But it is very important that SEA and policy-making/planning processes share several activities, such as fact-finding, information, stakeholder’s engagement and public participation.

Different models on how SEA and the policy-making/planning processes may link were identified some years ago (Partidário, 2004) (Figure below) and serve as an illustration of possible linkages.

The first two models (1 and 2) relate more closely to the EIA-based SEA approaches, the parallel model (2) being the most frequently used. Models 3 and 4 relate to more integrated and strategic approaches in SEA.

While the integrated model (3) may eventually represent the best SEA model in the long-term, the decision-centred model (4) seems to be the most flexible and adaptable but that is totally on the one’s disposal.
Conclusion of the Guidance document

As per the above elaborative discussion on the SEA and SEA guidance for Master Plan of Lahore, several items are concluded and suggested which are as below:

1- Strategic Environmental Assessment (SEA) is a must-to-do approach for any mega intervention in Pakistan

2- SEA must be carried out well before the time so as to integrate its results into the decision making process

3- SEA for master plan of Lahore should be conducted well before time so as to grip the critical factors at the right stage and right time

4- Analytical approaches that might be used to carry out the SEA may depend on the availability of the experts and their capacity to do such tasks in Pakistan or international experts can be engaged in order to undertake assessment

5- Ideally model 3 and 4 (SEA and the policy-making/planning models) must have been used but since now the planning process has gone a long way ahead hence model 1 and 2 are suggested for further development/assessment process

6- Policy reforms, as deemed necessary may be applied timely to mitigate future development loop holes

7- EIA would be required for each development under this master plan and as per Punjab Environmental Protection Act, SEA would govern as an umbrella for all the assessment at global level (national and international)

8- Authorities should now look more into the strategic decisions rather than isolated independent scenarios for mega level development
ANNEXURES
Annex-I

Map of Proposed Landfill Sites
Annex-II

Biodiversity Map of Project Site
Annexure-III

Map of Flood Prone Areas
Annexure-IV

Map of Environmental Locations
<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Name</th>
<th>X_Coord</th>
<th>Y_Coord</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AA-1 Ambient Air Quality</td>
<td>27° 54' 24.48" E</td>
<td>31° 44' 36.52" N</td>
</tr>
<tr>
<td>2</td>
<td>AA-2 Ambient Air Quality</td>
<td>27° 50' 25.82" E</td>
<td>31° 35' 4.38" N</td>
</tr>
<tr>
<td>3</td>
<td>AA-3 Ambient Air Quality</td>
<td>27° 49' 42.34" E</td>
<td>31° 59' 3.00" N</td>
</tr>
<tr>
<td>4</td>
<td>AA-4 Ambient Air Quality</td>
<td>27° 41' 17.06" E</td>
<td>31° 27' 6.67" N</td>
</tr>
<tr>
<td>5</td>
<td>AA-5 Ambient Air Quality</td>
<td>27° 51' 18.38" E</td>
<td>31° 29' 36.14" N</td>
</tr>
<tr>
<td>6</td>
<td>AA-6 Ambient Air Quality</td>
<td>27° 57' 5.62" E</td>
<td>31° 24' 32.72" N</td>
</tr>
<tr>
<td>7</td>
<td>AA-7 Ambient Air Quality</td>
<td>27° 57' 54.62" E</td>
<td>31° 49' 35.93" N</td>
</tr>
<tr>
<td>8</td>
<td>AA-8 Ambient Air Quality</td>
<td>27° 41' 59.95" E</td>
<td>31° 10' 26.81" N</td>
</tr>
<tr>
<td>9</td>
<td>AA-9 Ambient Air Quality</td>
<td>27° 40' 1.79" E</td>
<td>31° 48' 33.93" N</td>
</tr>
<tr>
<td>10</td>
<td>AA-10 Ambient Air Quality</td>
<td>27° 42' 53.96" E</td>
<td>31° 34' 45.33" N</td>
</tr>
<tr>
<td>11</td>
<td>AA-11 Ambient Air Quality</td>
<td>27° 56' 36.98" E</td>
<td>30° 50' 20.93" N</td>
</tr>
<tr>
<td>12</td>
<td>AA-12 Ambient Air Quality</td>
<td>27° 46' 6.34" E</td>
<td>31° 40' 7.24" N</td>
</tr>
<tr>
<td>13</td>
<td>AA-13 Ambient Air Quality</td>
<td>27° 46' 16.12" E</td>
<td>31° 34' 27.27" N</td>
</tr>
<tr>
<td>14</td>
<td>AA-14 Ambient Air Quality</td>
<td>27° 32' 27.78" E</td>
<td>31° 12' 21.13" N</td>
</tr>
<tr>
<td>15</td>
<td>AA-15 Ambient Air Quality</td>
<td>27° 56' 27.36" E</td>
<td>31° 14' 14.09" N</td>
</tr>
<tr>
<td>16</td>
<td>AA-16 Ambient Air Quality</td>
<td>27° 46' 26.39" E</td>
<td>31° 24' 8.73" N</td>
</tr>
<tr>
<td>17</td>
<td>GW-1 Ground Water Quality</td>
<td>27° 55' 14.78" E</td>
<td>31° 36' 40.37" N</td>
</tr>
<tr>
<td>18</td>
<td>GW-2 Ground Water Quality</td>
<td>27° 56' 36.98" E</td>
<td>31° 36' 50.18" N</td>
</tr>
<tr>
<td>19</td>
<td>GW-3 Ground Water Quality</td>
<td>27° 41' 21.06" E</td>
<td>31° 72' 3.95" N</td>
</tr>
<tr>
<td>20</td>
<td>GW-4 Ground Water Quality</td>
<td>27° 46' 50.39" E</td>
<td>31° 34' 53.93" N</td>
</tr>
<tr>
<td>21</td>
<td>GW-5 Ground Water Quality</td>
<td>27° 46' 14.78" E</td>
<td>31° 21' 8.73" N</td>
</tr>
<tr>
<td>22</td>
<td>GW-6 Ground Water Quality</td>
<td>27° 55' 51.99" E</td>
<td>31° 36' 50.18" N</td>
</tr>
<tr>
<td>23</td>
<td>GW-7 Ground Water Quality</td>
<td>27° 55' 0.00" E</td>
<td>31° 36' 10.04" N</td>
</tr>
<tr>
<td>24</td>
<td>GW-8 Ground Water Quality</td>
<td>27° 56' 36.98" E</td>
<td>31° 48' 5.95" N</td>
</tr>
<tr>
<td>25</td>
<td>GW-9 Ground Water Quality</td>
<td>27° 56' 53.06" E</td>
<td>31° 50' 3.93" N</td>
</tr>
<tr>
<td>26</td>
<td>GW-10 Ground Water Quality</td>
<td>27° 54' 20.93" E</td>
<td>31° 47' 39.93" N</td>
</tr>
<tr>
<td>27</td>
<td>GW-11 Ground Water Quality</td>
<td>27° 46' 50.39" E</td>
<td>31° 34' 53.93" N</td>
</tr>
<tr>
<td>28</td>
<td>GW-12 Ground Water Quality</td>
<td>27° 56' 36.98" E</td>
<td>30° 57' 54.09" N</td>
</tr>
<tr>
<td>29</td>
<td>GW-13 Ground Water Quality</td>
<td>27° 46' 50.39" E</td>
<td>31° 36' 50.18" N</td>
</tr>
<tr>
<td>30</td>
<td>GW-14 Ground Water Quality</td>
<td>27° 54' 20.93" E</td>
<td>31° 35' 55.23" N</td>
</tr>
<tr>
<td>31</td>
<td>GW-15 Ground Water Quality</td>
<td>27° 46' 50.39" E</td>
<td>31° 14' 50.38" N</td>
</tr>
<tr>
<td>32</td>
<td>GW-16 Ground Water Quality</td>
<td>27° 54' 20.93" E</td>
<td>31° 34' 26.30" N</td>
</tr>
<tr>
<td>33</td>
<td>NL-1 Noise Level</td>
<td>27° 52' 0.70" E</td>
<td>31° 44' 25.54" N</td>
</tr>
<tr>
<td>34</td>
<td>NL-2 Noise Level</td>
<td>27° 52' 0.70" E</td>
<td>31° 44' 25.54" N</td>
</tr>
<tr>
<td>35</td>
<td>NL-3 Noise Level</td>
<td>27° 52' 0.70" E</td>
<td>31° 44' 25.54" N</td>
</tr>
<tr>
<td>36</td>
<td>NL-4 Noise Level</td>
<td>27° 52' 0.70" E</td>
<td>31° 44' 25.54" N</td>
</tr>
<tr>
<td>37</td>
<td>NL-5 Noise Level</td>
<td>27° 52' 0.70" E</td>
<td>31° 44' 25.54" N</td>
</tr>
<tr>
<td>38</td>
<td>NL-6 Noise Level</td>
<td>27° 52' 0.70" E</td>
<td>31° 44' 25.54" N</td>
</tr>
<tr>
<td>39</td>
<td>NL-7 Noise Level</td>
<td>27° 52' 0.70" E</td>
<td>31° 44' 25.54" N</td>
</tr>
<tr>
<td>40</td>
<td>NL-8 Noise Level</td>
<td>27° 52' 0.70" E</td>
<td>31° 44' 25.54" N</td>
</tr>
<tr>
<td>41</td>
<td>NL-9 Noise Level</td>
<td>27° 52' 0.70" E</td>
<td>31° 44' 25.54" N</td>
</tr>
<tr>
<td>42</td>
<td>NL-10 Noise Level</td>
<td>27° 52' 0.70" E</td>
<td>31° 44' 25.54" N</td>
</tr>
<tr>
<td>43</td>
<td>NL-11 Noise Level</td>
<td>27° 52' 0.70" E</td>
<td>31° 44' 25.54" N</td>
</tr>
<tr>
<td>44</td>
<td>NL-12 Noise Level</td>
<td>27° 52' 0.70" E</td>
<td>31° 44' 25.54" N</td>
</tr>
<tr>
<td>45</td>
<td>NL-13 Noise Level</td>
<td>27° 52' 0.70" E</td>
<td>31° 44' 25.54" N</td>
</tr>
<tr>
<td>46</td>
<td>NL-14 Noise Level</td>
<td>27° 52' 0.70" E</td>
<td>31° 44' 25.54" N</td>
</tr>
<tr>
<td>47</td>
<td>NL-15 Noise Level</td>
<td>27° 52' 0.70" E</td>
<td>31° 44' 25.54" N</td>
</tr>
<tr>
<td>48</td>
<td>NL-16 Noise Level</td>
<td>27° 52' 0.70" E</td>
<td>31° 44' 25.54" N</td>
</tr>
<tr>
<td>49</td>
<td>SW-1 Surface Water Quality</td>
<td>27° 52' 0.70" E</td>
<td>31° 37' 20.04" N</td>
</tr>
<tr>
<td>50</td>
<td>SW-2 Surface Water Quality</td>
<td>27° 52' 0.70" E</td>
<td>31° 37' 20.04" N</td>
</tr>
<tr>
<td>51</td>
<td>SW-3 Surface Water Quality</td>
<td>27° 52' 0.70" E</td>
<td>31° 37' 20.04" N</td>
</tr>
<tr>
<td>52</td>
<td>SW-4 Surface Water Quality</td>
<td>27° 52' 0.70" E</td>
<td>31° 37' 20.04" N</td>
</tr>
<tr>
<td>53</td>
<td>SW-5 Surface Water Quality</td>
<td>27° 52' 0.70" E</td>
<td>31° 37' 20.04" N</td>
</tr>
<tr>
<td>54</td>
<td>SW-6 Surface Water Quality</td>
<td>27° 52' 0.70" E</td>
<td>31° 37' 20.04" N</td>
</tr>
<tr>
<td>55</td>
<td>SW-7 Surface Water Quality</td>
<td>27° 52' 0.70" E</td>
<td>31° 37' 20.04" N</td>
</tr>
<tr>
<td>56</td>
<td>SW-8 Surface Water Quality</td>
<td>27° 52' 0.70" E</td>
<td>31° 37' 20.04" N</td>
</tr>
<tr>
<td>57</td>
<td>WW-1 Waste Water Quality</td>
<td>27° 52' 0.70" E</td>
<td>31° 37' 20.04" N</td>
</tr>
<tr>
<td>58</td>
<td>WW-2 Waste Water Quality</td>
<td>27° 52' 0.70" E</td>
<td>31° 37' 20.04" N</td>
</tr>
<tr>
<td>59</td>
<td>WW-3 Waste Water Quality</td>
<td>27° 52' 0.70" E</td>
<td>31° 37' 20.04" N</td>
</tr>
<tr>
<td>60</td>
<td>WW-4 Waste Water Quality</td>
<td>27° 52' 0.70" E</td>
<td>31° 37' 20.04" N</td>
</tr>
</tbody>
</table>
Annexure-V

Photo Log of Project Site
Social Baseline Data and Public Consultation
View of River Ravi
View of Rice Fields

Lakhu Der Proposed Landfill Site
Housing Societies in Project Site

View of Railway Track near Sheikhupura
Site Area Photographs
Annexure-VI

Environmental & Social Baseline Data Sheets
Annexure-VII

Quantification of Site Evaluation Environmental Impacts
LAHORE MASTER PLAN (2035)
Sites

District Sheikhupura
PA-SKP-1(Sheikhupura City)
PA-SKP-2 (Muridke)
PA-SKP-3 (Ferozewala)
PA-SKP-4 (Farooqabad)
PA-SKP-5 (Narang Mandi)
PA-SKP-6 (Sharaqpur)
PA-SKP-7 (Safdarabad)
PA-SKP-8 (Bhiki)
PA-SKP-09 (Ferozwatwan)
PA-SKP-10 (Manawala)
PA-SKP-11 (Khanqa Dogran)
PA-SKP-12 (Jandiala Sher Khan)
PA-SKP-13 (Jabran)
PA-SKP-14 (Jaranwala Road)
PA-SKP-15 & 16 (Lahore Muridke
Road)
PA-SKP-18 (Sheikhupura Sargodha
Road-Dhantpura)
District Nankana Sahib
NSB-01(Mandi Faizabad)
NSB-02 (Syed Wala)
NSB-03 (Bucheki)
NSB-05 (Shahkot-I)
NSB-06 (Sangala Hill)
NSB-07 (Morekhunda)
NSB-08 (Shahkot-II)
NSB-09 (Warburton)
NSB-10
District Kasur
PA-K-06 (Raja Jang)
PA-K-07 (Kot Radha Kishan)
PA-K-08 (Changa Manga)
PA-K-09 (Bhai Pheru)
PA-K-10 & K 11
(Jamber and Jamber Industrial
Estate)
PA-K-12 (Chunian)
PA-K-13 (Allah Abad)
PA-K-14 (Kanaganpur)
PA-K-15 (Pattoki)
PA-K-16 (Talwandi)
K-01 (Kasur)
K-02 (Mustafabad)
K-03 (Industrial Estate)
K-04 (Khudian Khas)
K-05 (Rao Khan Wala)

Current
Population
(2015)

555824
219859
108864
99493
57467
42043
22070
47752
64891
50205
46509
20277
39509
17573

1243902
486391
240838
183929
117255
67297
48825
105641
143557
111067
90071
44859
87406
78876

108864

240838

108864

240838

67079
15468
19422
61450
75130
16978

106763
24615
30907
114297
120258
27017

26352
2952

Total (Residential + Industrial)
Electricity
Natural Gas
Water
Wastewater
Solid Waste

Residential

Industrial

Estimated
Natural
No.
Electricity
Gas
Of Houses
Usage
Usage
(MW) (cubic m/day)
94257
141
746341
36511
54
291834
3.2
144502
11567
17
110357
8190
12
70353
3459
5.1
40378
3665
5.4
29295
7930
11
63384
10776
16.1
86134
8337
12.5
66640
5967
8.9
54042
3367
4
26915
6561
9.5
52443
21250
10
23325
25400

38

144502

8.8
2.04
5.05
11
10
33

60585
13969
17543.2
65549
67342.8
15334.2

37282
8593

2.4
3

28033
62629
9830
104406

39505
107539
17719
216759

1639
6416
1127
29291

20001
72736
49829
28937
99402
20138
387142
67186
Nil
41505
15577

36054
137897
89822
48540
183781
34579
662171
133428
Nil
113600
28044

2902246

3925.535
46527412.28
6436.96465
5142.25932
10748.0806

No. of
Small
units

No. of
Medium
Units

739
320
636
Nil
Nil
Nil
Nil
Nil
Nil
Nil
10
Nil
Nil
Nil

Nil
65
127
Nil
Nil
Nil
Nil
Nil
116
Nil
2
Nil
Nil
Nil

Nil

Nil

Industrial Environmnetal Impacts

No. of Electri
Heavy
city
Units Usage
(MW)
153
94
20
140
38
270
Nil
35
233
Nil
Nil
Nil
1.25
Nil
Nil
Nil
Nil
Nil
Nil
Nil

Nil

Residential Environmnetal Impacts

Air (CO2
equivale
nt
Natural Gas emission Ground
Waste
Solid
Usage
s)
Water
Water
Waste Noise
cubic m/daymillion tonsCusecs/day
Cusecs/day Tons/day dBA
4355000
33.89
828
660
400 70-80
4100000
33.55
427
340
330 70-80
8000000
65
856
684
270 70-80
Nil
2332000
36.65
284
227
345 70-80
Nil
Nil
Nil
Nil
Nil
Nil
90000
0.7
11
8.8
7
70-80
Nil

Nil

Nil

Nil

Nil

Nil

Air
Nil

Ground Waste
Water
Water
Cusecs/day
Cusecs/day
150
120
6
4.8
29.53
23.624
22.5
18
14.3
11.44
8.25
6.6
5.9
4.72
12.9
10.3
17
13.6
1.39
0.5
11
8.8
5.5
4.4
10
8
0.67
0.53
21

16.8

Solid
Waste
tons/day
1057
413
205
156
100
57.2
41.5
89.7
122
94
76
38
75
3.3

Noise
dBA
60-70
60-70
60-70
60-70
60-70
60-70
60-70
60-70
60-70
60-70
60-70
60-70
60-70
60-70

204

60-70

Affected
Agricultural
Land

Acres
25000
7696
9956
1470
1540
732
530
6268
3979
1230
1000
415
700
2975
3556
500

5920
1365
1714
7485
6736
1498
1631
-

District Lahore
Ferozepur Road & BRB
PA-LHR-02 (Raiwind City)
PA-LHR-03 (Chunia Industrial Estate)
PA-LHR-04 (Multan Sui Asal and
Manga Road)
Total

Proposed Population
(2035)

21159.6
1756818

32
Nil
41
Nil
Nil
Nil
Nil
19
Nil

7
Nil
8
Nil
Nil
Nil
5
4
Nil

Nil
Nil
Nil
Nil
Nil
Nil
16
Nil
Nil

4.3
Nil
5.025
Nil
Nil
Nil
33
2.475
Nil

2643.83
Nil
1000
Nil
Nil
Nil
620000
479.45
Nil

2330000
Nil
284
Nil
Nil
Nil
5150000
136
Nil

25.3
Nil
31.6
Nil
Nil
Nil
59.6
13.2
Nil

20
Nil
25.2
Nil
Nil
Nil
47.6
10.5
Nil

25.5
Nil
31.02
Nil
Nil
Nil
46.3
14.8
Nil

75-80
Nil
75-80
Nil
Nil
Nil
75-80
75-80
Nil

Nil
Nil
Nil
Nil
Nil
Nil
Nil
Nil
Nil

12.3767
2.853
3.583
13.3
13.75
3.1
Nil
2.322
0.9

9.90132
2.283
2.867
10.712
11
2.5
Nil
3.458
0.7

85.829
19.7897
24.853
92.861
95.402
21.7234
Nil
29.9761
6.8

60-70
60-70
60-70
60-70
60-70
60-70
Nil
60-70
60-70

1134
380
868
1636
1532
753
627.03
110
294

2.5
9
1.6
29

23703
64523
10631
130055

Nil
Nil
Nil
Nil

Nil
Nil
Nil
118

Nil
Nil
Nil
35

Nil
Nil
Nil
234

Nil
Nil
Nil
2276000

Nil
Nil
Nil
36.4

Nil
Nil
Nil
428

Nil
Nil
Nil
340

Nil
Nil
Nil
350

Nil
Nil
Nil
70-80

Nil
Nil
Nil
Nil

4.8
13
2.17
26.5

3.84
10.4
1.736
21.2

33
91
15
184

60-70
60-70
60-70
60-70

454
1427
255
2792

2293
9309
5713
2800
12051
2063
39290
9463
Nil
5869
1784

5.1
6.5
8.9
4.2
18
3
58
14
Nil
8
2.02

21632.4
82738
53893
29124
110268
20747
3809763
76767
Nil
47712
18118.8

Nil
Nil
Nil
Nil
Nil
Nil
Nil
17
111
Nil
Nil

27
13
Nil
Nil
11
Nil
Nil
Nil
22
Nil
Nil

8
Nil

150
6.5
Nil
Nil
5.5
Nil
Nil
425
13.775
Nil
Nil

1020000
26000
Nil
Nil
22000
Nil
Nil
85000
995000
Nil
Nil

8.45
1.95
Nil
Nil
1.65
Nil
Nil
680000
7740000
Nil
Nil

98
31
Nil
Nil
2.69
Nil
Nil
10.42
86.03
Nil
Nil

78
24
Nil
Nil
2.08
Nil
Nil
8.3
68.8
Nil
Nil

80
22
Nil
Nil
18
Nil
Nil
7.2
84.5
Nil
Nil

70-80
70-80
Nil
Nil
70-80
Nil
Nil
75-80
75-80
Nil
Nil

Nil
Nil
Nil
Nil
Nil
Nil
Nil
Nil
Nil
Nil
Nil

4.4
16
11.01
5.95
2.2
4.24
77.827
15.682
Nil
9.74
3.701

3.52
12.8
8.08
4.76
1.76
3.41
62.261
12.546
Nil
7.79
2.961

30
117
76
41
156
29
539.712
108.7541
Nil
67.592
25.6683

60-70
60-70
60-70
60-70
60-70
60-70
60-70
60-70
Nil
60-70
60-70

2700
1749
1034
510
2300
523
2903
1250
1117
710
331

2380000
18760
105000

340000
2680
15000

1020
8
45

1428000
11256
63000

Nil
56
1000

Nil
11
200

Nil

Nil
390000
6200000

Nil

Nil

Nil
6.9
125

3740000
70

Nil
61.3
1000

Nil
49
800

Nil
136.9
765

Nil
75-80
70-80

Nil
Nil
Nil

291
5.3
0.18

232
4.24
0.14

2023
15
1.2

60-70
60-70
60-70

34000
620
6500

168000

25860

77

108612

1031

206

61

433

5933000

77.8

1300

1040

1000

70-80

Nil

22

20

153

60-70

15458

8522520

786236.4

1742.81

10079289

4012

942

366

2183

36448123

2E+07

5553.14

4433.28

883.82

708.979

6814.8606

60-70

151514.03

3933.22 70-80 Nil

